Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduoppcciso Structured version   Visualization version   GIF version

Theorem oduoppcciso 49559
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
oduoppcbas.d (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
oduoppcbas.o 𝑂 = (oppCat‘𝐶)
oduoppcciso.u (𝜑𝑈𝑉)
oduoppcciso.d (𝜑𝐷𝑈)
oduoppcciso.o (𝜑𝑂𝑈)
Assertion
Ref Expression
oduoppcciso (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)

Proof of Theorem oduoppcciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (CatCat‘𝑈) = (CatCat‘𝑈)
2 eqid 2730 . 2 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2730 . 2 (Base‘𝑂) = (Base‘𝑂)
4 eqid 2730 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2730 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 oduoppcciso.u . 2 (𝜑𝑈𝑉)
7 oduoppcciso.d . 2 (𝜑𝐷𝑈)
8 oduoppcciso.o . 2 (𝜑𝑂𝑈)
9 oduoppcbas.d . . 3 (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
10 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
11 eqid 2730 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
1211oduprs 18268 . . . 4 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
1310, 12syl 17 . . 3 (𝜑 → (ODual‘𝐾) ∈ Proset )
149, 13prstcthin 49554 . 2 (𝜑𝐷 ∈ ThinCat)
15 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
1615, 10prstcthin 49554 . . 3 (𝜑𝐶 ∈ ThinCat)
17 oduoppcbas.o . . . 4 𝑂 = (oppCat‘𝐶)
1817oppcthin 49431 . . 3 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
1916, 18syl 17 . 2 (𝜑𝑂 ∈ ThinCat)
20 f1oi 6841 . . 3 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
2115, 10, 9, 17oduoppcbas 49558 . . . 4 (𝜑 → (Base‘𝐷) = (Base‘𝑂))
2221f1oeq3d 6800 . . 3 (𝜑 → (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂)))
2320, 22mpbii 233 . 2 (𝜑 → ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂))
24 eqid 2730 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
25 eqid 2730 . . . . . . 7 (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾))
2611, 24, 25oduleg 18258 . . . . . 6 ((𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
2726adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 = (ProsetToCat‘(ODual‘𝐾)))
2910adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾 ∈ Proset )
3029, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (ODual‘𝐾) ∈ Proset )
31 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾)))
3228, 30, 31prstcleval 49548 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘𝐷))
33 eqidd 2731 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐷) = (Hom ‘𝐷))
34 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
35 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
3628, 30, 32, 33, 34, 35prstchom 49555 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦 ↔ (𝑥(Hom ‘𝐷)𝑦) ≠ ∅))
3715adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 = (ProsetToCat‘𝐾))
38 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐾))
3937, 29, 38prstcleval 49548 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐶))
40 eqidd 2731 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐶))
41 eqid 2730 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
4217, 41oppcbas 17686 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝑂)
4321, 42eqtr4di 2783 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (Base‘𝐶))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐶))
4535, 44eleqtrd 2831 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐶))
4634, 44eleqtrd 2831 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4737, 29, 39, 40, 45, 46prstchom 49555 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑦(le‘𝐾)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4827, 36, 473bitr3d 309 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) ≠ ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4948necon4bid 2971 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
50 fvresi 7150 . . . . . . 7 (𝑥 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
5150ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
52 fvresi 7150 . . . . . . 7 (𝑦 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5352ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5451, 53oveq12d 7408 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑥(Hom ‘𝑂)𝑦))
55 eqid 2730 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
5655, 17oppchom 17683 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5754, 56eqtrdi 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑦(Hom ‘𝐶)𝑥))
5857eqeq1d 2732 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
5949, 58bitr4d 282 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅))
601, 2, 3, 4, 5, 6, 7, 8, 14, 19, 23, 59thinccisod 49447 1 (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4299   class class class wbr 5110   I cid 5535  cres 5643  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  Hom chom 17238  oppCatcoppc 17679  𝑐 ccic 17764  CatCatccatc 18067  ODualcodu 18254   Proset cproset 18260  ThinCatcthinc 49410  ProsetToCatcprstc 49542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ple 17247  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-oppc 17680  df-sect 17716  df-inv 17717  df-iso 17718  df-cic 17765  df-func 17827  df-idfu 17828  df-cofu 17829  df-full 17875  df-fth 17876  df-catc 18068  df-odu 18255  df-proset 18262  df-thinc 49411  df-prstc 49543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator