Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduoppcciso Structured version   Visualization version   GIF version

Theorem oduoppcciso 48881
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
oduoppcbas.d (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
oduoppcbas.o 𝑂 = (oppCat‘𝐶)
oduoppcciso.u (𝜑𝑈𝑉)
oduoppcciso.d (𝜑𝐷𝑈)
oduoppcciso.o (𝜑𝑂𝑈)
Assertion
Ref Expression
oduoppcciso (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)

Proof of Theorem oduoppcciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . 2 (CatCat‘𝑈) = (CatCat‘𝑈)
2 eqid 2734 . 2 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2734 . 2 (Base‘𝑂) = (Base‘𝑂)
4 eqid 2734 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2734 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 oduoppcciso.u . 2 (𝜑𝑈𝑉)
7 oduoppcciso.d . 2 (𝜑𝐷𝑈)
8 oduoppcciso.o . 2 (𝜑𝑂𝑈)
9 oduoppcbas.d . . 3 (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
10 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
11 eqid 2734 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
1211oduprs 18357 . . . 4 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
1310, 12syl 17 . . 3 (𝜑 → (ODual‘𝐾) ∈ Proset )
149, 13prstcthin 48876 . 2 (𝜑𝐷 ∈ ThinCat)
15 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
1615, 10prstcthin 48876 . . 3 (𝜑𝐶 ∈ ThinCat)
17 oduoppcbas.o . . . 4 𝑂 = (oppCat‘𝐶)
1817oppcthin 48838 . . 3 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
1916, 18syl 17 . 2 (𝜑𝑂 ∈ ThinCat)
20 f1oi 6886 . . 3 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
2115, 10, 9, 17oduoppcbas 48880 . . . 4 (𝜑 → (Base‘𝐷) = (Base‘𝑂))
2221f1oeq3d 6845 . . 3 (𝜑 → (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂)))
2320, 22mpbii 233 . 2 (𝜑 → ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂))
24 eqid 2734 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
25 eqid 2734 . . . . . . 7 (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾))
2611, 24, 25oduleg 18346 . . . . . 6 ((𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
2726adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 = (ProsetToCat‘(ODual‘𝐾)))
2910adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾 ∈ Proset )
3029, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (ODual‘𝐾) ∈ Proset )
31 eqidd 2735 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾)))
3228, 30, 31prstcleval 48868 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘𝐷))
33 eqidd 2735 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐷) = (Hom ‘𝐷))
34 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
35 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
3628, 30, 32, 33, 34, 35prstchom 48877 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦 ↔ (𝑥(Hom ‘𝐷)𝑦) ≠ ∅))
3715adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 = (ProsetToCat‘𝐾))
38 eqidd 2735 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐾))
3937, 29, 38prstcleval 48868 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐶))
40 eqidd 2735 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐶))
41 eqid 2734 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
4217, 41oppcbas 17763 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝑂)
4321, 42eqtr4di 2792 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (Base‘𝐶))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐶))
4535, 44eleqtrd 2840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐶))
4634, 44eleqtrd 2840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4737, 29, 39, 40, 45, 46prstchom 48877 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑦(le‘𝐾)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4827, 36, 473bitr3d 309 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) ≠ ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4948necon4bid 2983 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
50 fvresi 7192 . . . . . . 7 (𝑥 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
5150ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
52 fvresi 7192 . . . . . . 7 (𝑦 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5352ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5451, 53oveq12d 7448 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑥(Hom ‘𝑂)𝑦))
55 eqid 2734 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
5655, 17oppchom 17760 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5754, 56eqtrdi 2790 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑦(Hom ‘𝐶)𝑥))
5857eqeq1d 2736 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
5949, 58bitr4d 282 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅))
601, 2, 3, 4, 5, 6, 7, 8, 14, 19, 23, 59thinccisod 48849 1 (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  c0 4338   class class class wbr 5147   I cid 5581  cres 5690  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  Hom chom 17308  oppCatcoppc 17755  𝑐 ccic 17842  CatCatccatc 18151  ODualcodu 18342   Proset cproset 18349  ThinCatcthinc 48818  ProsetToCatcprstc 48862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ple 17317  df-hom 17321  df-cco 17322  df-cat 17712  df-cid 17713  df-oppc 17756  df-sect 17794  df-inv 17795  df-iso 17796  df-cic 17843  df-func 17908  df-idfu 17909  df-cofu 17910  df-full 17957  df-fth 17958  df-catc 18152  df-odu 18343  df-proset 18351  df-thinc 48819  df-prstc 48863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator