Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduoppcciso Structured version   Visualization version   GIF version

Theorem oduoppcciso 49146
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
oduoppcbas.d (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
oduoppcbas.o 𝑂 = (oppCat‘𝐶)
oduoppcciso.u (𝜑𝑈𝑉)
oduoppcciso.d (𝜑𝐷𝑈)
oduoppcciso.o (𝜑𝑂𝑈)
Assertion
Ref Expression
oduoppcciso (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)

Proof of Theorem oduoppcciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (CatCat‘𝑈) = (CatCat‘𝑈)
2 eqid 2736 . 2 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2736 . 2 (Base‘𝑂) = (Base‘𝑂)
4 eqid 2736 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2736 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 oduoppcciso.u . 2 (𝜑𝑈𝑉)
7 oduoppcciso.d . 2 (𝜑𝐷𝑈)
8 oduoppcciso.o . 2 (𝜑𝑂𝑈)
9 oduoppcbas.d . . 3 (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
10 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
11 eqid 2736 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
1211oduprs 18342 . . . 4 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
1310, 12syl 17 . . 3 (𝜑 → (ODual‘𝐾) ∈ Proset )
149, 13prstcthin 49141 . 2 (𝜑𝐷 ∈ ThinCat)
15 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
1615, 10prstcthin 49141 . . 3 (𝜑𝐶 ∈ ThinCat)
17 oduoppcbas.o . . . 4 𝑂 = (oppCat‘𝐶)
1817oppcthin 49063 . . 3 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
1916, 18syl 17 . 2 (𝜑𝑂 ∈ ThinCat)
20 f1oi 6884 . . 3 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
2115, 10, 9, 17oduoppcbas 49145 . . . 4 (𝜑 → (Base‘𝐷) = (Base‘𝑂))
2221f1oeq3d 6843 . . 3 (𝜑 → (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂)))
2320, 22mpbii 233 . 2 (𝜑 → ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂))
24 eqid 2736 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
25 eqid 2736 . . . . . . 7 (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾))
2611, 24, 25oduleg 18331 . . . . . 6 ((𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
2726adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 = (ProsetToCat‘(ODual‘𝐾)))
2910adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾 ∈ Proset )
3029, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (ODual‘𝐾) ∈ Proset )
31 eqidd 2737 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾)))
3228, 30, 31prstcleval 49133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘𝐷))
33 eqidd 2737 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐷) = (Hom ‘𝐷))
34 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
35 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
3628, 30, 32, 33, 34, 35prstchom 49142 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦 ↔ (𝑥(Hom ‘𝐷)𝑦) ≠ ∅))
3715adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 = (ProsetToCat‘𝐾))
38 eqidd 2737 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐾))
3937, 29, 38prstcleval 49133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐶))
40 eqidd 2737 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐶))
41 eqid 2736 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
4217, 41oppcbas 17757 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝑂)
4321, 42eqtr4di 2794 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (Base‘𝐶))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐶))
4535, 44eleqtrd 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐶))
4634, 44eleqtrd 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4737, 29, 39, 40, 45, 46prstchom 49142 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑦(le‘𝐾)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4827, 36, 473bitr3d 309 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) ≠ ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4948necon4bid 2985 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
50 fvresi 7191 . . . . . . 7 (𝑥 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
5150ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
52 fvresi 7191 . . . . . . 7 (𝑦 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5352ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5451, 53oveq12d 7447 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑥(Hom ‘𝑂)𝑦))
55 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
5655, 17oppchom 17754 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5754, 56eqtrdi 2792 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑦(Hom ‘𝐶)𝑥))
5857eqeq1d 2738 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
5949, 58bitr4d 282 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅))
601, 2, 3, 4, 5, 6, 7, 8, 14, 19, 23, 59thinccisod 49079 1 (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2939  c0 4332   class class class wbr 5141   I cid 5575  cres 5685  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  Basecbs 17243  lecple 17300  Hom chom 17304  oppCatcoppc 17750  𝑐 ccic 17835  CatCatccatc 18139  ODualcodu 18327   Proset cproset 18334  ThinCatcthinc 49043  ProsetToCatcprstc 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-tpos 8247  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ple 17313  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-oppc 17751  df-sect 17787  df-inv 17788  df-iso 17789  df-cic 17836  df-func 17899  df-idfu 17900  df-cofu 17901  df-full 17947  df-fth 17948  df-catc 18140  df-odu 18328  df-proset 18336  df-thinc 49044  df-prstc 49128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator