Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduoppcciso Structured version   Visualization version   GIF version

Theorem oduoppcciso 49548
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
oduoppcbas.d (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
oduoppcbas.o 𝑂 = (oppCat‘𝐶)
oduoppcciso.u (𝜑𝑈𝑉)
oduoppcciso.d (𝜑𝐷𝑈)
oduoppcciso.o (𝜑𝑂𝑈)
Assertion
Ref Expression
oduoppcciso (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)

Proof of Theorem oduoppcciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (CatCat‘𝑈) = (CatCat‘𝑈)
2 eqid 2729 . 2 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2729 . 2 (Base‘𝑂) = (Base‘𝑂)
4 eqid 2729 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2729 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 oduoppcciso.u . 2 (𝜑𝑈𝑉)
7 oduoppcciso.d . 2 (𝜑𝐷𝑈)
8 oduoppcciso.o . 2 (𝜑𝑂𝑈)
9 oduoppcbas.d . . 3 (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
10 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
11 eqid 2729 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
1211oduprs 18241 . . . 4 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
1310, 12syl 17 . . 3 (𝜑 → (ODual‘𝐾) ∈ Proset )
149, 13prstcthin 49543 . 2 (𝜑𝐷 ∈ ThinCat)
15 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
1615, 10prstcthin 49543 . . 3 (𝜑𝐶 ∈ ThinCat)
17 oduoppcbas.o . . . 4 𝑂 = (oppCat‘𝐶)
1817oppcthin 49420 . . 3 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
1916, 18syl 17 . 2 (𝜑𝑂 ∈ ThinCat)
20 f1oi 6820 . . 3 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
2115, 10, 9, 17oduoppcbas 49547 . . . 4 (𝜑 → (Base‘𝐷) = (Base‘𝑂))
2221f1oeq3d 6779 . . 3 (𝜑 → (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂)))
2320, 22mpbii 233 . 2 (𝜑 → ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂))
24 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
25 eqid 2729 . . . . . . 7 (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾))
2611, 24, 25oduleg 18231 . . . . . 6 ((𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
2726adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 = (ProsetToCat‘(ODual‘𝐾)))
2910adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾 ∈ Proset )
3029, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (ODual‘𝐾) ∈ Proset )
31 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾)))
3228, 30, 31prstcleval 49537 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘𝐷))
33 eqidd 2730 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐷) = (Hom ‘𝐷))
34 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
35 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
3628, 30, 32, 33, 34, 35prstchom 49544 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦 ↔ (𝑥(Hom ‘𝐷)𝑦) ≠ ∅))
3715adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 = (ProsetToCat‘𝐾))
38 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐾))
3937, 29, 38prstcleval 49537 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐶))
40 eqidd 2730 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐶))
41 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
4217, 41oppcbas 17659 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝑂)
4321, 42eqtr4di 2782 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (Base‘𝐶))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐶))
4535, 44eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐶))
4634, 44eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4737, 29, 39, 40, 45, 46prstchom 49544 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑦(le‘𝐾)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4827, 36, 473bitr3d 309 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) ≠ ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4948necon4bid 2970 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
50 fvresi 7129 . . . . . . 7 (𝑥 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
5150ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
52 fvresi 7129 . . . . . . 7 (𝑦 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5352ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5451, 53oveq12d 7387 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑥(Hom ‘𝑂)𝑦))
55 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
5655, 17oppchom 17656 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5754, 56eqtrdi 2780 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑦(Hom ‘𝐶)𝑥))
5857eqeq1d 2731 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
5949, 58bitr4d 282 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅))
601, 2, 3, 4, 5, 6, 7, 8, 14, 19, 23, 59thinccisod 49436 1 (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4292   class class class wbr 5102   I cid 5525  cres 5633  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Hom chom 17207  oppCatcoppc 17652  𝑐 ccic 17737  CatCatccatc 18040  ODualcodu 18227   Proset cproset 18233  ThinCatcthinc 49399  ProsetToCatcprstc 49531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ple 17216  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-oppc 17653  df-sect 17689  df-inv 17690  df-iso 17691  df-cic 17738  df-func 17800  df-idfu 17801  df-cofu 17802  df-full 17848  df-fth 17849  df-catc 18041  df-odu 18228  df-proset 18235  df-thinc 49400  df-prstc 49532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator