Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduoppcciso Structured version   Visualization version   GIF version

Theorem oduoppcciso 49171
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, 22-Sep-2025.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
oduoppcbas.d (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
oduoppcbas.o 𝑂 = (oppCat‘𝐶)
oduoppcciso.u (𝜑𝑈𝑉)
oduoppcciso.d (𝜑𝐷𝑈)
oduoppcciso.o (𝜑𝑂𝑈)
Assertion
Ref Expression
oduoppcciso (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)

Proof of Theorem oduoppcciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . 2 (CatCat‘𝑈) = (CatCat‘𝑈)
2 eqid 2734 . 2 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2734 . 2 (Base‘𝑂) = (Base‘𝑂)
4 eqid 2734 . 2 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2734 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 oduoppcciso.u . 2 (𝜑𝑈𝑉)
7 oduoppcciso.d . 2 (𝜑𝐷𝑈)
8 oduoppcciso.o . 2 (𝜑𝑂𝑈)
9 oduoppcbas.d . . 3 (𝜑𝐷 = (ProsetToCat‘(ODual‘𝐾)))
10 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
11 eqid 2734 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
1211oduprs 18316 . . . 4 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
1310, 12syl 17 . . 3 (𝜑 → (ODual‘𝐾) ∈ Proset )
149, 13prstcthin 49166 . 2 (𝜑𝐷 ∈ ThinCat)
15 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
1615, 10prstcthin 49166 . . 3 (𝜑𝐶 ∈ ThinCat)
17 oduoppcbas.o . . . 4 𝑂 = (oppCat‘𝐶)
1817oppcthin 49065 . . 3 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
1916, 18syl 17 . 2 (𝜑𝑂 ∈ ThinCat)
20 f1oi 6866 . . 3 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
2115, 10, 9, 17oduoppcbas 49170 . . . 4 (𝜑 → (Base‘𝐷) = (Base‘𝑂))
2221f1oeq3d 6825 . . 3 (𝜑 → (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂)))
2320, 22mpbii 233 . 2 (𝜑 → ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝑂))
24 eqid 2734 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
25 eqid 2734 . . . . . . 7 (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾))
2611, 24, 25oduleg 18305 . . . . . 6 ((𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
2726adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦𝑦(le‘𝐾)𝑥))
289adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 = (ProsetToCat‘(ODual‘𝐾)))
2910adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾 ∈ Proset )
3029, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (ODual‘𝐾) ∈ Proset )
31 eqidd 2735 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘(ODual‘𝐾)))
3228, 30, 31prstcleval 49158 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘(ODual‘𝐾)) = (le‘𝐷))
33 eqidd 2735 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐷) = (Hom ‘𝐷))
34 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
35 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
3628, 30, 32, 33, 34, 35prstchom 49167 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(le‘(ODual‘𝐾))𝑦 ↔ (𝑥(Hom ‘𝐷)𝑦) ≠ ∅))
3715adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐶 = (ProsetToCat‘𝐾))
38 eqidd 2735 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐾))
3937, 29, 38prstcleval 49158 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (le‘𝐾) = (le‘𝐶))
40 eqidd 2735 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐶))
41 eqid 2734 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
4217, 41oppcbas 17732 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝑂)
4321, 42eqtr4di 2787 . . . . . . . 8 (𝜑 → (Base‘𝐷) = (Base‘𝐶))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐶))
4535, 44eleqtrd 2835 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐶))
4634, 44eleqtrd 2835 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐶))
4737, 29, 39, 40, 45, 46prstchom 49167 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑦(le‘𝐾)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4827, 36, 473bitr3d 309 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) ≠ ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
4948necon4bid 2976 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
50 fvresi 7175 . . . . . . 7 (𝑥 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
5150ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑥) = 𝑥)
52 fvresi 7175 . . . . . . 7 (𝑦 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5352ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (( I ↾ (Base‘𝐷))‘𝑦) = 𝑦)
5451, 53oveq12d 7431 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑥(Hom ‘𝑂)𝑦))
55 eqid 2734 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
5655, 17oppchom 17729 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5754, 56eqtrdi 2785 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = (𝑦(Hom ‘𝐶)𝑥))
5857eqeq1d 2736 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅ ↔ (𝑦(Hom ‘𝐶)𝑥) = ∅))
5949, 58bitr4d 282 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(Hom ‘𝐷)𝑦) = ∅ ↔ ((( I ↾ (Base‘𝐷))‘𝑥)(Hom ‘𝑂)(( I ↾ (Base‘𝐷))‘𝑦)) = ∅))
601, 2, 3, 4, 5, 6, 7, 8, 14, 19, 23, 59thinccisod 49081 1 (𝜑𝐷( ≃𝑐 ‘(CatCat‘𝑈))𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  c0 4313   class class class wbr 5123   I cid 5557  cres 5667  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Basecbs 17229  lecple 17280  Hom chom 17284  oppCatcoppc 17725  𝑐 ccic 17810  CatCatccatc 18114  ODualcodu 18301   Proset cproset 18308  ThinCatcthinc 49044  ProsetToCatcprstc 49152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ple 17293  df-hom 17297  df-cco 17298  df-cat 17682  df-cid 17683  df-oppc 17726  df-sect 17762  df-inv 17763  df-iso 17764  df-cic 17811  df-func 17874  df-idfu 17875  df-cofu 17876  df-full 17922  df-fth 17923  df-catc 18115  df-odu 18302  df-proset 18310  df-thinc 49045  df-prstc 49153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator