![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcxpcl | GIF version |
Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
rpcxpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7958 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
2 | rpcxpef 14668 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
4 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
5 | relogcl 14636 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (log‘𝐴) ∈ ℝ) |
7 | 4, 6 | remulcld 8002 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
8 | 7 | rpefcld 11708 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (exp‘(𝐵 · (log‘𝐴))) ∈ ℝ+) |
9 | 3, 8 | eqeltrd 2264 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 ℝcr 7824 · cmul 7830 ℝ+crp 9667 expce 11664 logclog 14630 ↑𝑐ccxp 14631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 ax-pre-suploc 7946 ax-addf 7947 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-of 6097 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-map 6664 df-pm 6665 df-en 6755 df-dom 6756 df-fin 6757 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-xneg 9786 df-xadd 9787 df-ioo 9906 df-ico 9908 df-icc 9909 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-fac 10720 df-bc 10742 df-ihash 10770 df-shft 10838 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 df-ef 11670 df-e 11671 df-rest 12708 df-topgen 12727 df-psmet 13786 df-xmet 13787 df-met 13788 df-bl 13789 df-mopn 13790 df-top 13851 df-topon 13864 df-bases 13896 df-ntr 13949 df-cn 14041 df-cnp 14042 df-tx 14106 df-cncf 14411 df-limced 14478 df-dvap 14479 df-relog 14632 df-rpcxp 14633 |
This theorem is referenced by: cxpmul 14686 rpcxproot 14687 cxple 14690 cxplt3 14693 cxple3 14694 rpcxpsqrt 14695 rpcxpcld 14705 rprelogbmulexp 14727 sqrt2cxp2logb9e3 14746 |
Copyright terms: Public domain | W3C validator |