MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn Structured version   Visualization version   GIF version

Theorem cncfcn 24803
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cncfcn.2 𝐽 = (TopOpen‘ℂfld)
cncfcn.3 𝐾 = (𝐽t 𝐴)
cncfcn.4 𝐿 = (𝐽t 𝐵)
Assertion
Ref Expression
cncfcn ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))

Proof of Theorem cncfcn
StepHypRef Expression
1 eqid 2729 . . 3 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
2 eqid 2729 . . 3 ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
3 eqid 2729 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
4 eqid 2729 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))
51, 2, 3, 4cncfmet 24802 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
6 cncfcn.3 . . . 4 𝐾 = (𝐽t 𝐴)
7 cnxmet 24660 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
8 simpl 482 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ)
9 cncfcn.2 . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 24669 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
111, 10, 3metrest 24412 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
127, 8, 11sylancr 587 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
136, 12eqtrid 2776 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
14 cncfcn.4 . . . 4 𝐿 = (𝐽t 𝐵)
15 simpr 484 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ)
162, 10, 4metrest 24412 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
177, 15, 16sylancr 587 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1814, 17eqtrid 2776 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1913, 18oveq12d 7405 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
205, 19eqtr4d 2767 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cc 11066  cmin 11405  abscabs 15200  t crest 17383  TopOpenctopn 17384  ∞Metcxmet 21249  MetOpencmopn 21254  fldccnfld 21264   Cn ccn 23111  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cnp 23115  df-cncf 24771
This theorem is referenced by:  cncfcn1  24804  cncfmptc  24805  cncfmptid  24806  cncfmpt2f  24808  cdivcncf  24814  abscncfALT  24818  cncfcnvcn  24819  cnrehmeo  24851  cnrehmeoOLD  24852  mulcncf  25346  cncombf  25559  cnmbf  25560  cnlimc  25789  dvcn  25823  dvcnvrelem2  25923  dvcnvre  25924  ftc1cn  25950  psercn  26336  abelth  26351  logcn  26556  dvloglem  26557  efopnlem2  26566  cxpcn  26654  cxpcnOLD  26655  resqrtcn  26659  sqrtcn  26660  loglesqrt  26671  ftalem3  26985  cxpcncf1  34586  ivthALT  36323  knoppcnlem10  36490  knoppcnlem11  36491  ftc1cnnc  37686  areacirclem2  37703  areacirclem4  37705  fsumcncf  45876  ioccncflimc  45883  cncfuni  45884  icocncflimc  45887  cncfdmsn  45888  cncfiooicclem1  45891  cncfiooicc  45892  cxpcncf2  45897  itgsubsticclem  45973  dirkercncflem2  46102  dirkercncflem4  46104  dirkercncf  46105  fourierdlem32  46137  fourierdlem33  46138  fourierdlem62  46166  fourierdlem93  46197  fourierdlem101  46205  fouriercn  46230
  Copyright terms: Public domain W3C validator