![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcn | Structured version Visualization version GIF version |
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
cncfcn.2 | β’ π½ = (TopOpenββfld) |
cncfcn.3 | β’ πΎ = (π½ βΎt π΄) |
cncfcn.4 | β’ πΏ = (π½ βΎt π΅) |
Ref | Expression |
---|---|
cncfcn | β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 β’ ((abs β β ) βΎ (π΄ Γ π΄)) = ((abs β β ) βΎ (π΄ Γ π΄)) | |
2 | eqid 2724 | . . 3 β’ ((abs β β ) βΎ (π΅ Γ π΅)) = ((abs β β ) βΎ (π΅ Γ π΅)) | |
3 | eqid 2724 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) | |
4 | eqid 2724 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) | |
5 | 1, 2, 3, 4 | cncfmet 24751 | . 2 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
6 | cncfcn.3 | . . . 4 β’ πΎ = (π½ βΎt π΄) | |
7 | cnxmet 24611 | . . . . 5 β’ (abs β β ) β (βMetββ) | |
8 | simpl 482 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΄ β β) | |
9 | cncfcn.2 | . . . . . . 7 β’ π½ = (TopOpenββfld) | |
10 | 9 | cnfldtopn 24620 | . . . . . 6 β’ π½ = (MetOpenβ(abs β β )) |
11 | 1, 10, 3 | metrest 24355 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΄ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
12 | 7, 8, 11 | sylancr 586 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
13 | 6, 12 | eqtrid 2776 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΎ = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
14 | cncfcn.4 | . . . 4 β’ πΏ = (π½ βΎt π΅) | |
15 | simpr 484 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΅ β β) | |
16 | 2, 10, 4 | metrest 24355 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
17 | 7, 15, 16 | sylancr 586 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
18 | 14, 17 | eqtrid 2776 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΏ = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
19 | 13, 18 | oveq12d 7419 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πΎ Cn πΏ) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
20 | 5, 19 | eqtr4d 2767 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3940 Γ cxp 5664 βΎ cres 5668 β ccom 5670 βcfv 6533 (class class class)co 7401 βcc 11104 β cmin 11441 abscabs 15178 βΎt crest 17365 TopOpenctopn 17366 βMetcxmet 21213 MetOpencmopn 21218 βfldccnfld 21228 Cn ccn 23050 βcnβccncf 24718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-fz 13482 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-topgen 17388 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-top 22718 df-topon 22735 df-bases 22771 df-cn 23053 df-cnp 23054 df-cncf 24720 |
This theorem is referenced by: cncfcn1 24753 cncfmptc 24754 cncfmptid 24755 cncfmpt2f 24757 cdivcncf 24763 abscncfALT 24767 cncfcnvcn 24768 cnrehmeo 24800 cnrehmeoOLD 24801 mulcncf 25296 cncombf 25509 cnmbf 25510 cnlimc 25739 dvcn 25773 dvcnvrelem2 25873 dvcnvre 25874 ftc1cn 25900 psercn 26280 abelth 26295 logcn 26497 dvloglem 26498 efopnlem2 26507 cxpcn 26595 cxpcnOLD 26596 resqrtcn 26600 sqrtcn 26601 loglesqrt 26609 ftalem3 26923 cxpcncf1 34096 ivthALT 35710 knoppcnlem10 35868 knoppcnlem11 35869 ftc1cnnc 37050 areacirclem2 37067 areacirclem4 37069 fsumcncf 45079 ioccncflimc 45086 cncfuni 45087 icocncflimc 45090 cncfdmsn 45091 cncfiooicclem1 45094 cncfiooicc 45095 cxpcncf2 45100 itgsubsticclem 45176 dirkercncflem2 45305 dirkercncflem4 45307 dirkercncf 45308 fourierdlem32 45340 fourierdlem33 45341 fourierdlem62 45369 fourierdlem93 45400 fourierdlem101 45408 fouriercn 45433 |
Copyright terms: Public domain | W3C validator |