| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcn | Structured version Visualization version GIF version | ||
| Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcn.2 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcn.3 | ⊢ 𝐾 = (𝐽 ↾t 𝐴) |
| cncfcn.4 | ⊢ 𝐿 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| cncfcn | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
| 2 | eqid 2729 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2729 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
| 4 | eqid 2729 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | cncfmet 24802 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 6 | cncfcn.3 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝐴) | |
| 7 | cnxmet 24660 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ) | |
| 9 | cncfcn.2 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 10 | 9 | cnfldtopn 24669 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 11 | 1, 10, 3 | metrest 24412 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 12 | 7, 8, 11 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 13 | 6, 12 | eqtrid 2776 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 14 | cncfcn.4 | . . . 4 ⊢ 𝐿 = (𝐽 ↾t 𝐵) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 16 | 2, 10, 4 | metrest 24412 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 17 | 7, 15, 16 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 18 | 14, 17 | eqtrid 2776 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 19 | 13, 18 | oveq12d 7405 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 20 | 5, 19 | eqtr4d 2767 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 − cmin 11405 abscabs 15200 ↾t crest 17383 TopOpenctopn 17384 ∞Metcxmet 21249 MetOpencmopn 21254 ℂfldccnfld 21264 Cn ccn 23111 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-cnp 23115 df-cncf 24771 |
| This theorem is referenced by: cncfcn1 24804 cncfmptc 24805 cncfmptid 24806 cncfmpt2f 24808 cdivcncf 24814 abscncfALT 24818 cncfcnvcn 24819 cnrehmeo 24851 cnrehmeoOLD 24852 mulcncf 25346 cncombf 25559 cnmbf 25560 cnlimc 25789 dvcn 25823 dvcnvrelem2 25923 dvcnvre 25924 ftc1cn 25950 psercn 26336 abelth 26351 logcn 26556 dvloglem 26557 efopnlem2 26566 cxpcn 26654 cxpcnOLD 26655 resqrtcn 26659 sqrtcn 26660 loglesqrt 26671 ftalem3 26985 cxpcncf1 34586 ivthALT 36323 knoppcnlem10 36490 knoppcnlem11 36491 ftc1cnnc 37686 areacirclem2 37703 areacirclem4 37705 fsumcncf 45876 ioccncflimc 45883 cncfuni 45884 icocncflimc 45887 cncfdmsn 45888 cncfiooicclem1 45891 cncfiooicc 45892 cxpcncf2 45897 itgsubsticclem 45973 dirkercncflem2 46102 dirkercncflem4 46104 dirkercncf 46105 fourierdlem32 46137 fourierdlem33 46138 fourierdlem62 46166 fourierdlem93 46197 fourierdlem101 46205 fouriercn 46230 |
| Copyright terms: Public domain | W3C validator |