MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn Structured version   Visualization version   GIF version

Theorem cncfcn 23517
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cncfcn.2 𝐽 = (TopOpen‘ℂfld)
cncfcn.3 𝐾 = (𝐽t 𝐴)
cncfcn.4 𝐿 = (𝐽t 𝐵)
Assertion
Ref Expression
cncfcn ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))

Proof of Theorem cncfcn
StepHypRef Expression
1 eqid 2821 . . 3 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
2 eqid 2821 . . 3 ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
3 eqid 2821 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
4 eqid 2821 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))
51, 2, 3, 4cncfmet 23516 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
6 cncfcn.3 . . . 4 𝐾 = (𝐽t 𝐴)
7 cnxmet 23381 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
8 simpl 485 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ)
9 cncfcn.2 . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 23390 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
111, 10, 3metrest 23134 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
127, 8, 11sylancr 589 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
136, 12syl5eq 2868 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
14 cncfcn.4 . . . 4 𝐿 = (𝐽t 𝐵)
15 simpr 487 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ)
162, 10, 4metrest 23134 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
177, 15, 16sylancr 589 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1814, 17syl5eq 2868 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1913, 18oveq12d 7174 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
205, 19eqtr4d 2859 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3936   × cxp 5553  cres 5557  ccom 5559  cfv 6355  (class class class)co 7156  cc 10535  cmin 10870  abscabs 14593  t crest 16694  TopOpenctopn 16695  ∞Metcxmet 20530  MetOpencmopn 20535  fldccnfld 20545   Cn ccn 21832  cnccncf 23484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-bases 21554  df-cn 21835  df-cnp 21836  df-cncf 23486
This theorem is referenced by:  cncfcn1  23518  cncfmptc  23519  cncfmptid  23520  cncfmpt2f  23522  cdivcncf  23525  abscncfALT  23528  cncfcnvcn  23529  cnrehmeo  23557  cncombf  24259  cnmbf  24260  cnlimc  24486  dvcn  24518  dvcnvrelem2  24615  dvcnvre  24616  ftc1cn  24640  psercn  25014  abelth  25029  logcn  25230  dvloglem  25231  efopnlem2  25240  cxpcn  25326  resqrtcn  25330  sqrtcn  25331  loglesqrt  25339  ftalem3  25652  cxpcncf1  31866  ivthALT  33683  knoppcnlem10  33841  knoppcnlem11  33842  ftc1cnnc  34981  areacirclem2  34998  areacirclem4  35000  fsumcncf  42181  ioccncflimc  42188  cncfuni  42189  icocncflimc  42192  cncfdmsn  42193  cncfiooicclem1  42196  cncfiooicc  42197  cxpcncf2  42203  itgsubsticclem  42280  dirkercncflem2  42409  dirkercncflem4  42411  dirkercncf  42412  fourierdlem32  42444  fourierdlem33  42445  fourierdlem62  42473  fourierdlem93  42504  fourierdlem101  42512  fouriercn  42537
  Copyright terms: Public domain W3C validator