| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcn | Structured version Visualization version GIF version | ||
| Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcn.2 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcn.3 | ⊢ 𝐾 = (𝐽 ↾t 𝐴) |
| cncfcn.4 | ⊢ 𝐿 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| cncfcn | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
| 2 | eqid 2729 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2729 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
| 4 | eqid 2729 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | cncfmet 24818 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 6 | cncfcn.3 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝐴) | |
| 7 | cnxmet 24676 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ) | |
| 9 | cncfcn.2 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 10 | 9 | cnfldtopn 24685 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 11 | 1, 10, 3 | metrest 24428 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 12 | 7, 8, 11 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 13 | 6, 12 | eqtrid 2776 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 14 | cncfcn.4 | . . . 4 ⊢ 𝐿 = (𝐽 ↾t 𝐵) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 16 | 2, 10, 4 | metrest 24428 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 17 | 7, 15, 16 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 18 | 14, 17 | eqtrid 2776 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 19 | 13, 18 | oveq12d 7371 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 20 | 5, 19 | eqtr4d 2767 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 − cmin 11365 abscabs 15159 ↾t crest 17342 TopOpenctopn 17343 ∞Metcxmet 21264 MetOpencmopn 21269 ℂfldccnfld 21279 Cn ccn 23127 –cn→ccncf 24785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 df-cnp 23131 df-cncf 24787 |
| This theorem is referenced by: cncfcn1 24820 cncfmptc 24821 cncfmptid 24822 cncfmpt2f 24824 cdivcncf 24830 abscncfALT 24834 cncfcnvcn 24835 cnrehmeo 24867 cnrehmeoOLD 24868 mulcncf 25362 cncombf 25575 cnmbf 25576 cnlimc 25805 dvcn 25839 dvcnvrelem2 25939 dvcnvre 25940 ftc1cn 25966 psercn 26352 abelth 26367 logcn 26572 dvloglem 26573 efopnlem2 26582 cxpcn 26670 cxpcnOLD 26671 resqrtcn 26675 sqrtcn 26676 loglesqrt 26687 ftalem3 27001 cxpcncf1 34562 ivthALT 36308 knoppcnlem10 36475 knoppcnlem11 36476 ftc1cnnc 37671 areacirclem2 37688 areacirclem4 37690 fsumcncf 45860 ioccncflimc 45867 cncfuni 45868 icocncflimc 45871 cncfdmsn 45872 cncfiooicclem1 45875 cncfiooicc 45876 cxpcncf2 45881 itgsubsticclem 45957 dirkercncflem2 46086 dirkercncflem4 46088 dirkercncf 46089 fourierdlem32 46121 fourierdlem33 46122 fourierdlem62 46150 fourierdlem93 46181 fourierdlem101 46189 fouriercn 46214 |
| Copyright terms: Public domain | W3C validator |