MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn Structured version   Visualization version   GIF version

Theorem cncfcn 22928
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cncfcn.2 𝐽 = (TopOpen‘ℂfld)
cncfcn.3 𝐾 = (𝐽t 𝐴)
cncfcn.4 𝐿 = (𝐽t 𝐵)
Assertion
Ref Expression
cncfcn ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))

Proof of Theorem cncfcn
StepHypRef Expression
1 eqid 2771 . . 3 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
2 eqid 2771 . . 3 ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
3 eqid 2771 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
4 eqid 2771 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))
51, 2, 3, 4cncfmet 22927 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
6 cncfcn.3 . . . 4 𝐾 = (𝐽t 𝐴)
7 cnxmet 22792 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
8 simpl 468 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ)
9 cncfcn.2 . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 22801 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
111, 10, 3metrest 22545 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
127, 8, 11sylancr 575 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
136, 12syl5eq 2817 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
14 cncfcn.4 . . . 4 𝐿 = (𝐽t 𝐵)
15 simpr 471 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ)
162, 10, 4metrest 22545 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
177, 15, 16sylancr 575 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1814, 17syl5eq 2817 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1913, 18oveq12d 6810 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
205, 19eqtr4d 2808 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wss 3723   × cxp 5247  cres 5251  ccom 5253  cfv 6029  (class class class)co 6792  cc 10136  cmin 10468  abscabs 14178  t crest 16285  TopOpenctopn 16286  ∞Metcxmt 19942  MetOpencmopn 19947  fldccnfld 19957   Cn ccn 21245  cnccncf 22895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12147  df-xadd 12148  df-xmul 12149  df-fz 12530  df-seq 13005  df-exp 13064  df-cj 14043  df-re 14044  df-im 14045  df-sqrt 14179  df-abs 14180  df-struct 16062  df-ndx 16063  df-slot 16064  df-base 16066  df-plusg 16158  df-mulr 16159  df-starv 16160  df-tset 16164  df-ple 16165  df-ds 16168  df-unif 16169  df-rest 16287  df-topn 16288  df-topgen 16308  df-psmet 19949  df-xmet 19950  df-met 19951  df-bl 19952  df-mopn 19953  df-cnfld 19958  df-top 20915  df-topon 20932  df-bases 20967  df-cn 21248  df-cnp 21249  df-cncf 22897
This theorem is referenced by:  cncfcn1  22929  cncfmptc  22930  cncfmptid  22931  cncfmpt2f  22933  cdivcncf  22936  abscncfALT  22939  cncfcnvcn  22940  cnrehmeo  22968  cncombf  23641  cnmbf  23642  cnlimc  23868  dvcn  23900  dvcnvrelem2  23997  dvcnvre  23998  ftc1cn  24022  psercn  24396  abelth  24411  logcn  24610  dvloglem  24611  efopnlem2  24620  cxpcn  24703  resqrtcn  24707  sqrtcn  24708  loglesqrt  24716  ftalem3  25018  cxpcncf1  31009  ivthALT  32663  knoppcnlem10  32825  knoppcnlem11  32826  ftc1cnnc  33812  areacirclem2  33829  areacirclem4  33831  fsumcncf  40606  ioccncflimc  40613  cncfuni  40614  icocncflimc  40617  cncfdmsn  40618  cncfiooicclem1  40621  cncfiooicc  40622  cxpcncf2  40628  itgsubsticclem  40705  dirkercncflem2  40835  dirkercncflem4  40837  dirkercncf  40838  fourierdlem32  40870  fourierdlem33  40871  fourierdlem62  40899  fourierdlem93  40930  fourierdlem101  40938  fouriercn  40963
  Copyright terms: Public domain W3C validator