![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcn | Structured version Visualization version GIF version |
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
cncfcn.2 | β’ π½ = (TopOpenββfld) |
cncfcn.3 | β’ πΎ = (π½ βΎt π΄) |
cncfcn.4 | β’ πΏ = (π½ βΎt π΅) |
Ref | Expression |
---|---|
cncfcn | β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 β’ ((abs β β ) βΎ (π΄ Γ π΄)) = ((abs β β ) βΎ (π΄ Γ π΄)) | |
2 | eqid 2727 | . . 3 β’ ((abs β β ) βΎ (π΅ Γ π΅)) = ((abs β β ) βΎ (π΅ Γ π΅)) | |
3 | eqid 2727 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) | |
4 | eqid 2727 | . . 3 β’ (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))) | |
5 | 1, 2, 3, 4 | cncfmet 24822 | . 2 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
6 | cncfcn.3 | . . . 4 β’ πΎ = (π½ βΎt π΄) | |
7 | cnxmet 24682 | . . . . 5 β’ (abs β β ) β (βMetββ) | |
8 | simpl 482 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΄ β β) | |
9 | cncfcn.2 | . . . . . . 7 β’ π½ = (TopOpenββfld) | |
10 | 9 | cnfldtopn 24691 | . . . . . 6 β’ π½ = (MetOpenβ(abs β β )) |
11 | 1, 10, 3 | metrest 24426 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΄ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
12 | 7, 8, 11 | sylancr 586 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΄) = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
13 | 6, 12 | eqtrid 2779 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΎ = (MetOpenβ((abs β β ) βΎ (π΄ Γ π΄)))) |
14 | cncfcn.4 | . . . 4 β’ πΏ = (π½ βΎt π΅) | |
15 | simpr 484 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β π΅ β β) | |
16 | 2, 10, 4 | metrest 24426 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
17 | 7, 15, 16 | sylancr 586 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π½ βΎt π΅) = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
18 | 14, 17 | eqtrid 2779 | . . 3 β’ ((π΄ β β β§ π΅ β β) β πΏ = (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅)))) |
19 | 13, 18 | oveq12d 7432 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πΎ Cn πΏ) = ((MetOpenβ((abs β β ) βΎ (π΄ Γ π΄))) Cn (MetOpenβ((abs β β ) βΎ (π΅ Γ π΅))))) |
20 | 5, 19 | eqtr4d 2770 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄βcnβπ΅) = (πΎ Cn πΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wss 3944 Γ cxp 5670 βΎ cres 5674 β ccom 5676 βcfv 6542 (class class class)co 7414 βcc 11130 β cmin 11468 abscabs 15207 βΎt crest 17395 TopOpenctopn 17396 βMetcxmet 21257 MetOpencmopn 21262 βfldccnfld 21272 Cn ccn 23121 βcnβccncf 24789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-fz 13511 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-rest 17397 df-topn 17398 df-topgen 17418 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-cnfld 21273 df-top 22789 df-topon 22806 df-bases 22842 df-cn 23124 df-cnp 23125 df-cncf 24791 |
This theorem is referenced by: cncfcn1 24824 cncfmptc 24825 cncfmptid 24826 cncfmpt2f 24828 cdivcncf 24834 abscncfALT 24838 cncfcnvcn 24839 cnrehmeo 24871 cnrehmeoOLD 24872 mulcncf 25367 cncombf 25580 cnmbf 25581 cnlimc 25810 dvcn 25844 dvcnvrelem2 25944 dvcnvre 25945 ftc1cn 25971 psercn 26356 abelth 26371 logcn 26574 dvloglem 26575 efopnlem2 26584 cxpcn 26672 cxpcnOLD 26673 resqrtcn 26677 sqrtcn 26678 loglesqrt 26686 ftalem3 27000 cxpcncf1 34217 ivthALT 35809 knoppcnlem10 35967 knoppcnlem11 35968 ftc1cnnc 37154 areacirclem2 37171 areacirclem4 37173 fsumcncf 45238 ioccncflimc 45245 cncfuni 45246 icocncflimc 45249 cncfdmsn 45250 cncfiooicclem1 45253 cncfiooicc 45254 cxpcncf2 45259 itgsubsticclem 45335 dirkercncflem2 45464 dirkercncflem4 45466 dirkercncf 45467 fourierdlem32 45499 fourierdlem33 45500 fourierdlem62 45528 fourierdlem93 45559 fourierdlem101 45567 fouriercn 45592 |
Copyright terms: Public domain | W3C validator |