| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcn | Structured version Visualization version GIF version | ||
| Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcn.2 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcn.3 | ⊢ 𝐾 = (𝐽 ↾t 𝐴) |
| cncfcn.4 | ⊢ 𝐿 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| cncfcn | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
| 2 | eqid 2730 | . . 3 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2730 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
| 4 | eqid 2730 | . . 3 ⊢ (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
| 5 | 1, 2, 3, 4 | cncfmet 24809 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 6 | cncfcn.3 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝐴) | |
| 7 | cnxmet 24667 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ) | |
| 9 | cncfcn.2 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 10 | 9 | cnfldtopn 24676 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 11 | 1, 10, 3 | metrest 24419 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 12 | 7, 8, 11 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 13 | 6, 12 | eqtrid 2777 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))) |
| 14 | cncfcn.4 | . . . 4 ⊢ 𝐿 = (𝐽 ↾t 𝐵) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 16 | 2, 10, 4 | metrest 24419 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 17 | 7, 15, 16 | sylancr 587 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽 ↾t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 18 | 14, 17 | eqtrid 2777 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))) |
| 19 | 13, 18 | oveq12d 7408 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))) |
| 20 | 5, 19 | eqtr4d 2768 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 − cmin 11412 abscabs 15207 ↾t crest 17390 TopOpenctopn 17391 ∞Metcxmet 21256 MetOpencmopn 21261 ℂfldccnfld 21271 Cn ccn 23118 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 df-cnp 23122 df-cncf 24778 |
| This theorem is referenced by: cncfcn1 24811 cncfmptc 24812 cncfmptid 24813 cncfmpt2f 24815 cdivcncf 24821 abscncfALT 24825 cncfcnvcn 24826 cnrehmeo 24858 cnrehmeoOLD 24859 mulcncf 25353 cncombf 25566 cnmbf 25567 cnlimc 25796 dvcn 25830 dvcnvrelem2 25930 dvcnvre 25931 ftc1cn 25957 psercn 26343 abelth 26358 logcn 26563 dvloglem 26564 efopnlem2 26573 cxpcn 26661 cxpcnOLD 26662 resqrtcn 26666 sqrtcn 26667 loglesqrt 26678 ftalem3 26992 cxpcncf1 34593 ivthALT 36330 knoppcnlem10 36497 knoppcnlem11 36498 ftc1cnnc 37693 areacirclem2 37710 areacirclem4 37712 fsumcncf 45883 ioccncflimc 45890 cncfuni 45891 icocncflimc 45894 cncfdmsn 45895 cncfiooicclem1 45898 cncfiooicc 45899 cxpcncf2 45904 itgsubsticclem 45980 dirkercncflem2 46109 dirkercncflem4 46111 dirkercncf 46112 fourierdlem32 46144 fourierdlem33 46145 fourierdlem62 46173 fourierdlem93 46204 fourierdlem101 46212 fouriercn 46237 |
| Copyright terms: Public domain | W3C validator |