MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn Structured version   Visualization version   GIF version

Theorem cncfcn 24831
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cncfcn.2 𝐽 = (TopOpen‘ℂfld)
cncfcn.3 𝐾 = (𝐽t 𝐴)
cncfcn.4 𝐿 = (𝐽t 𝐵)
Assertion
Ref Expression
cncfcn ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))

Proof of Theorem cncfcn
StepHypRef Expression
1 eqid 2733 . . 3 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
2 eqid 2733 . . 3 ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
3 eqid 2733 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
4 eqid 2733 . . 3 (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))
51, 2, 3, 4cncfmet 24830 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
6 cncfcn.3 . . . 4 𝐾 = (𝐽t 𝐴)
7 cnxmet 24688 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
8 simpl 482 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐴 ⊆ ℂ)
9 cncfcn.2 . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 24697 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
111, 10, 3metrest 24440 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
127, 8, 11sylancr 587 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
136, 12eqtrid 2780 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
14 cncfcn.4 . . . 4 𝐿 = (𝐽t 𝐵)
15 simpr 484 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ)
162, 10, 4metrest 24440 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
177, 15, 16sylancr 587 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐽t 𝐵) = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1814, 17eqtrid 2780 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))))
1913, 18oveq12d 7370 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐾 Cn 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) Cn (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵)))))
205, 19eqtr4d 2771 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898   × cxp 5617  cres 5621  ccom 5623  cfv 6486  (class class class)co 7352  cc 11011  cmin 11351  abscabs 15143  t crest 17326  TopOpenctopn 17327  ∞Metcxmet 21278  MetOpencmopn 21283  fldccnfld 21293   Cn ccn 23140  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-cnp 23144  df-cncf 24799
This theorem is referenced by:  cncfcn1  24832  cncfmptc  24833  cncfmptid  24834  cncfmpt2f  24836  cdivcncf  24842  abscncfALT  24846  cncfcnvcn  24847  cnrehmeo  24879  cnrehmeoOLD  24880  mulcncf  25374  cncombf  25587  cnmbf  25588  cnlimc  25817  dvcn  25851  dvcnvrelem2  25951  dvcnvre  25952  ftc1cn  25978  psercn  26364  abelth  26379  logcn  26584  dvloglem  26585  efopnlem2  26594  cxpcn  26682  cxpcnOLD  26683  resqrtcn  26687  sqrtcn  26688  loglesqrt  26699  ftalem3  27013  cxpcncf1  34629  ivthALT  36400  knoppcnlem10  36567  knoppcnlem11  36568  ftc1cnnc  37752  areacirclem2  37769  areacirclem4  37771  fsumcncf  46000  ioccncflimc  46007  cncfuni  46008  icocncflimc  46011  cncfdmsn  46012  cncfiooicclem1  46015  cncfiooicc  46016  cxpcncf2  46021  itgsubsticclem  46097  dirkercncflem2  46226  dirkercncflem4  46228  dirkercncf  46229  fourierdlem32  46261  fourierdlem33  46262  fourierdlem62  46290  fourierdlem93  46321  fourierdlem101  46329  fouriercn  46354
  Copyright terms: Public domain W3C validator