MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1term Structured version   Visualization version   GIF version

Theorem coe1term 24860
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1term ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁
Allowed substitution hints:   𝐹(𝑧)   𝑀(𝑧)

Proof of Theorem coe1term
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coe1term.1 . . . . . 6 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
21coe1termlem 24859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
32simpld 498 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
43fveq1d 6651 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀))
543adant3 1129 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀))
6 eqid 2801 . . 3 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
7 eqeq1 2805 . . . 4 (𝑛 = 𝑀 → (𝑛 = 𝑁𝑀 = 𝑁))
87ifbid 4450 . . 3 (𝑛 = 𝑀 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑀 = 𝑁, 𝐴, 0))
9 simp3 1135 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
10 simp1 1133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐴 ∈ ℂ)
11 0cn 10626 . . . 4 0 ∈ ℂ
12 ifcl 4472 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑀 = 𝑁, 𝐴, 0) ∈ ℂ)
1310, 11, 12sylancl 589 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → if(𝑀 = 𝑁, 𝐴, 0) ∈ ℂ)
146, 8, 9, 13fvmptd3 6772 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
155, 14eqtrd 2836 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  ifcif 4428  cmpt 5113  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530   · cmul 10535  0cn0 11889  cexp 13429  coeffccoe 24787  degcdgr 24788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-0p 24278  df-ply 24789  df-coe 24791  df-dgr 24792
This theorem is referenced by:  coeidp  24864  dgrcolem2  24875  plydivlem4  24896
  Copyright terms: Public domain W3C validator