![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1term | Structured version Visualization version GIF version |
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
coe1term.1 | β’ πΉ = (π§ β β β¦ (π΄ Β· (π§βπ))) |
Ref | Expression |
---|---|
coe1term | β’ ((π΄ β β β§ π β β0 β§ π β β0) β ((coeffβπΉ)βπ) = if(π = π, π΄, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1term.1 | . . . . . 6 β’ πΉ = (π§ β β β¦ (π΄ Β· (π§βπ))) | |
2 | 1 | coe1termlem 26008 | . . . . 5 β’ ((π΄ β β β§ π β β0) β ((coeffβπΉ) = (π β β0 β¦ if(π = π, π΄, 0)) β§ (π΄ β 0 β (degβπΉ) = π))) |
3 | 2 | simpld 494 | . . . 4 β’ ((π΄ β β β§ π β β0) β (coeffβπΉ) = (π β β0 β¦ if(π = π, π΄, 0))) |
4 | 3 | fveq1d 6893 | . . 3 β’ ((π΄ β β β§ π β β0) β ((coeffβπΉ)βπ) = ((π β β0 β¦ if(π = π, π΄, 0))βπ)) |
5 | 4 | 3adant3 1131 | . 2 β’ ((π΄ β β β§ π β β0 β§ π β β0) β ((coeffβπΉ)βπ) = ((π β β0 β¦ if(π = π, π΄, 0))βπ)) |
6 | eqid 2731 | . . 3 β’ (π β β0 β¦ if(π = π, π΄, 0)) = (π β β0 β¦ if(π = π, π΄, 0)) | |
7 | eqeq1 2735 | . . . 4 β’ (π = π β (π = π β π = π)) | |
8 | 7 | ifbid 4551 | . . 3 β’ (π = π β if(π = π, π΄, 0) = if(π = π, π΄, 0)) |
9 | simp3 1137 | . . 3 β’ ((π΄ β β β§ π β β0 β§ π β β0) β π β β0) | |
10 | simp1 1135 | . . . 4 β’ ((π΄ β β β§ π β β0 β§ π β β0) β π΄ β β) | |
11 | 0cn 11211 | . . . 4 β’ 0 β β | |
12 | ifcl 4573 | . . . 4 β’ ((π΄ β β β§ 0 β β) β if(π = π, π΄, 0) β β) | |
13 | 10, 11, 12 | sylancl 585 | . . 3 β’ ((π΄ β β β§ π β β0 β§ π β β0) β if(π = π, π΄, 0) β β) |
14 | 6, 8, 9, 13 | fvmptd3 7021 | . 2 β’ ((π΄ β β β§ π β β0 β§ π β β0) β ((π β β0 β¦ if(π = π, π΄, 0))βπ) = if(π = π, π΄, 0)) |
15 | 5, 14 | eqtrd 2771 | 1 β’ ((π΄ β β β§ π β β0 β§ π β β0) β ((coeffβπΉ)βπ) = if(π = π, π΄, 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 ifcif 4528 β¦ cmpt 5231 βcfv 6543 (class class class)co 7412 βcc 11112 0cc0 11114 Β· cmul 11119 β0cn0 12477 βcexp 14032 coeffccoe 25936 degcdgr 25937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-sum 15638 df-0p 25420 df-ply 25938 df-coe 25940 df-dgr 25941 |
This theorem is referenced by: coeidp 26014 dgrcolem2 26025 plydivlem4 26046 |
Copyright terms: Public domain | W3C validator |