MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1term Structured version   Visualization version   GIF version

Theorem coe1term 26313
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1term ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁
Allowed substitution hints:   𝐹(𝑧)   𝑀(𝑧)

Proof of Theorem coe1term
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coe1term.1 . . . . . 6 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
21coe1termlem 26312 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
32simpld 494 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
43fveq1d 6909 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀))
543adant3 1131 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀))
6 eqid 2735 . . 3 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
7 eqeq1 2739 . . . 4 (𝑛 = 𝑀 → (𝑛 = 𝑁𝑀 = 𝑁))
87ifbid 4554 . . 3 (𝑛 = 𝑀 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑀 = 𝑁, 𝐴, 0))
9 simp3 1137 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
10 simp1 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐴 ∈ ℂ)
11 0cn 11251 . . . 4 0 ∈ ℂ
12 ifcl 4576 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑀 = 𝑁, 𝐴, 0) ∈ ℂ)
1310, 11, 12sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → if(𝑀 = 𝑁, 𝐴, 0) ∈ ℂ)
146, 8, 9, 13fvmptd3 7039 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
155, 14eqtrd 2775 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  ifcif 4531  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153   · cmul 11158  0cn0 12524  cexp 14099  coeffccoe 26240  degcdgr 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-coe 26244  df-dgr 26245
This theorem is referenced by:  coeidp  26318  dgrcolem2  26329  plydivlem4  26353
  Copyright terms: Public domain W3C validator