| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5ngric | Structured version Visualization version GIF version | ||
| Description: The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpg5ngric | ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12776 | . . . . 5 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 1elfzo1ceilhalf1 47368 | . . . . . 6 ⊢ (5 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(5 / 2)))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ (1..^(⌈‘(5 / 2))) |
| 4 | 1, 3 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) |
| 5 | gpgusgra 48088 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph) | |
| 6 | usgruspgr 29153 | . . . 4 ⊢ ((5 gPetersenGr 1) ∈ USGraph → (5 gPetersenGr 1) ∈ USPGraph) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 1) ∈ USPGraph |
| 8 | pglem 48122 | . . . . 5 ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | |
| 9 | 1, 8 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) |
| 10 | gpgusgra 48088 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph) | |
| 11 | usgruspgr 29153 | . . . 4 ⊢ ((5 gPetersenGr 2) ∈ USGraph → (5 gPetersenGr 2) ∈ USPGraph) | |
| 12 | 9, 10, 11 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 2) ∈ USPGraph |
| 13 | 7, 12 | pm3.2i 470 | . 2 ⊢ ((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) |
| 14 | gpgprismgr4cyclex 48138 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) |
| 16 | pg4cyclnex 48158 | . . 3 ⊢ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4) | |
| 17 | 15, 16 | pm3.2i 470 | . 2 ⊢ (∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) |
| 18 | cycldlenngric 47959 | . 2 ⊢ (((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) → ((∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) → ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) | |
| 19 | 13, 17, 18 | mp2 9 | 1 ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 1c1 11002 / cdiv 11769 2c2 12175 3c3 12176 4c4 12177 5c5 12178 ℤ≥cuz 12727 ..^cfzo 13549 ⌈cceil 13690 ♯chash 14232 USPGraphcuspgr 29121 USGraphcusgr 29122 Cyclesccycls 29758 ≃𝑔𝑟 cgric 47907 gPetersenGr cgpg 48071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-fl 13691 df-ceil 13692 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-s4 14752 df-s5 14753 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-edgf 28962 df-vtx 28971 df-iedg 28972 df-edg 29021 df-uhgr 29031 df-upgr 29055 df-umgr 29056 df-uspgr 29123 df-usgr 29124 df-nbgr 29306 df-wlks 29573 df-trls 29664 df-pths 29687 df-cycls 29760 df-grim 47909 df-gric 47912 df-gpg 48072 |
| This theorem is referenced by: lgricngricex 48160 |
| Copyright terms: Public domain | W3C validator |