| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5ngric | Structured version Visualization version GIF version | ||
| Description: The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpg5ngric | ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12787 | . . . . 5 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 1elfzo1ceilhalf1 47499 | . . . . . 6 ⊢ (5 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(5 / 2)))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ (1..^(⌈‘(5 / 2))) |
| 4 | 1, 3 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) |
| 5 | gpgusgra 48219 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph) | |
| 6 | usgruspgr 29179 | . . . 4 ⊢ ((5 gPetersenGr 1) ∈ USGraph → (5 gPetersenGr 1) ∈ USPGraph) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 1) ∈ USPGraph |
| 8 | pglem 48253 | . . . . 5 ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | |
| 9 | 1, 8 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) |
| 10 | gpgusgra 48219 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph) | |
| 11 | usgruspgr 29179 | . . . 4 ⊢ ((5 gPetersenGr 2) ∈ USGraph → (5 gPetersenGr 2) ∈ USPGraph) | |
| 12 | 9, 10, 11 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 2) ∈ USPGraph |
| 13 | 7, 12 | pm3.2i 470 | . 2 ⊢ ((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) |
| 14 | gpgprismgr4cyclex 48269 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) |
| 16 | pg4cyclnex 48289 | . . 3 ⊢ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4) | |
| 17 | 15, 16 | pm3.2i 470 | . 2 ⊢ (∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) |
| 18 | cycldlenngric 48090 | . 2 ⊢ (((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) → ((∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) → ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) | |
| 19 | 13, 17, 18 | mp2 9 | 1 ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 1c1 11018 / cdiv 11785 2c2 12191 3c3 12192 4c4 12193 5c5 12194 ℤ≥cuz 12742 ..^cfzo 13561 ⌈cceil 13702 ♯chash 14244 USPGraphcuspgr 29147 USGraphcusgr 29148 Cyclesccycls 29784 ≃𝑔𝑟 cgric 48038 gPetersenGr cgpg 48202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-ceil 13704 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-s4 14764 df-s5 14765 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-edgf 28988 df-vtx 28997 df-iedg 28998 df-edg 29047 df-uhgr 29057 df-upgr 29081 df-umgr 29082 df-uspgr 29149 df-usgr 29150 df-nbgr 29332 df-wlks 29599 df-trls 29690 df-pths 29713 df-cycls 29786 df-grim 48040 df-gric 48043 df-gpg 48203 |
| This theorem is referenced by: lgricngricex 48291 |
| Copyright terms: Public domain | W3C validator |