| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5ngric | Structured version Visualization version GIF version | ||
| Description: The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpg5ngric | ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12848 | . . . . 5 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 1elfzo1ceilhalf1 47328 | . . . . . 6 ⊢ (5 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(5 / 2)))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ (1..^(⌈‘(5 / 2))) |
| 4 | 1, 3 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) |
| 5 | gpgusgra 48038 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph) | |
| 6 | usgruspgr 29113 | . . . 4 ⊢ ((5 gPetersenGr 1) ∈ USGraph → (5 gPetersenGr 1) ∈ USPGraph) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 1) ∈ USPGraph |
| 8 | pglem 48072 | . . . . 5 ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | |
| 9 | 1, 8 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) |
| 10 | gpgusgra 48038 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph) | |
| 11 | usgruspgr 29113 | . . . 4 ⊢ ((5 gPetersenGr 2) ∈ USGraph → (5 gPetersenGr 2) ∈ USPGraph) | |
| 12 | 9, 10, 11 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 2) ∈ USPGraph |
| 13 | 7, 12 | pm3.2i 470 | . 2 ⊢ ((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) |
| 14 | gpgprismgr4cyclex 48087 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) |
| 16 | pg4cyclnex 48107 | . . 3 ⊢ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4) | |
| 17 | 15, 16 | pm3.2i 470 | . 2 ⊢ (∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) |
| 18 | cycldlenngric 47918 | . 2 ⊢ (((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) → ((∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) → ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) | |
| 19 | 13, 17, 18 | mp2 9 | 1 ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 1c1 11075 / cdiv 11841 2c2 12242 3c3 12243 4c4 12244 5c5 12245 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 ♯chash 14301 USPGraphcuspgr 29081 USGraphcusgr 29082 Cyclesccycls 29721 ≃𝑔𝑟 cgric 47866 gPetersenGr cgpg 48021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-ceil 13761 df-mod 13838 df-seq 13973 df-exp 14033 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-s2 14820 df-s3 14821 df-s4 14822 df-s5 14823 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-edgf 28922 df-vtx 28931 df-iedg 28932 df-edg 28981 df-uhgr 28991 df-upgr 29015 df-umgr 29016 df-uspgr 29083 df-usgr 29084 df-nbgr 29266 df-wlks 29533 df-trls 29626 df-pths 29650 df-cycls 29723 df-grim 47868 df-gric 47871 df-gpg 48022 |
| This theorem is referenced by: lgricngricex 48109 |
| Copyright terms: Public domain | W3C validator |