| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5ngric | Structured version Visualization version GIF version | ||
| Description: The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpg5ngric | ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12803 | . . . . 5 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 1elfzo1ceilhalf1 47341 | . . . . . 6 ⊢ (5 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(5 / 2)))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ (1..^(⌈‘(5 / 2))) |
| 4 | 1, 3 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) |
| 5 | gpgusgra 48061 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph) | |
| 6 | usgruspgr 29144 | . . . 4 ⊢ ((5 gPetersenGr 1) ∈ USGraph → (5 gPetersenGr 1) ∈ USPGraph) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 1) ∈ USPGraph |
| 8 | pglem 48095 | . . . . 5 ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | |
| 9 | 1, 8 | pm3.2i 470 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) |
| 10 | gpgusgra 48061 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph) | |
| 11 | usgruspgr 29144 | . . . 4 ⊢ ((5 gPetersenGr 2) ∈ USGraph → (5 gPetersenGr 2) ∈ USPGraph) | |
| 12 | 9, 10, 11 | mp2b 10 | . . 3 ⊢ (5 gPetersenGr 2) ∈ USPGraph |
| 13 | 7, 12 | pm3.2i 470 | . 2 ⊢ ((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) |
| 14 | gpgprismgr4cyclex 48111 | . . . 4 ⊢ (5 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) |
| 16 | pg4cyclnex 48131 | . . 3 ⊢ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4) | |
| 17 | 15, 16 | pm3.2i 470 | . 2 ⊢ (∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) |
| 18 | cycldlenngric 47932 | . 2 ⊢ (((5 gPetersenGr 1) ∈ USPGraph ∧ (5 gPetersenGr 2) ∈ USPGraph) → ((∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘(5 gPetersenGr 2))𝑝 ∧ (♯‘𝑓) = 4)) → ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) | |
| 19 | 13, 17, 18 | mp2 9 | 1 ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1c1 11029 / cdiv 11796 2c2 12202 3c3 12203 4c4 12204 5c5 12205 ℤ≥cuz 12754 ..^cfzo 13576 ⌈cceil 13714 ♯chash 14256 USPGraphcuspgr 29112 USGraphcusgr 29113 Cyclesccycls 29749 ≃𝑔𝑟 cgric 47880 gPetersenGr cgpg 48044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-ico 13273 df-fz 13430 df-fzo 13577 df-fl 13715 df-ceil 13716 df-mod 13793 df-seq 13928 df-exp 13988 df-hash 14257 df-word 14440 df-concat 14497 df-s1 14522 df-s2 14774 df-s3 14775 df-s4 14776 df-s5 14777 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-dvds 16183 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-edgf 28953 df-vtx 28962 df-iedg 28963 df-edg 29012 df-uhgr 29022 df-upgr 29046 df-umgr 29047 df-uspgr 29114 df-usgr 29115 df-nbgr 29297 df-wlks 29564 df-trls 29655 df-pths 29678 df-cycls 29751 df-grim 47882 df-gric 47885 df-gpg 48045 |
| This theorem is referenced by: lgricngricex 48133 |
| Copyright terms: Public domain | W3C validator |