| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcffth | Structured version Visualization version GIF version | ||
| Description: A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fucoppcffth.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| fucoppcffth | ⊢ (𝜑 → 𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (CatCat‘{𝑅, 𝑆}) = (CatCat‘{𝑅, 𝑆}) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Iso‘(CatCat‘{𝑅, 𝑆})) = (Iso‘(CatCat‘{𝑅, 𝑆})) | |
| 5 | fucoppc.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 6 | fucoppc.p | . . . . . 6 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 7 | fucoppc.q | . . . . . 6 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 8 | fucoppc.r | . . . . . 6 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 9 | fucoppc.s | . . . . . 6 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 10 | fucoppc.n | . . . . . 6 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 11 | fucoppc.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 12 | fucoppc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (Base‘(CatCat‘{𝑅, 𝑆})) = (Base‘(CatCat‘{𝑅, 𝑆})) | |
| 14 | fucoppcffth.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 15 | fucoppcffth.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 16 | 7, 14, 15 | fuccat 17875 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 17 | 8 | oppccat 17623 | . . . . . . . . . 10 ⊢ (𝑄 ∈ Cat → 𝑅 ∈ Cat) |
| 18 | 16, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Cat) |
| 19 | prid1g 4708 | . . . . . . . . 9 ⊢ (𝑅 ∈ Cat → 𝑅 ∈ {𝑅, 𝑆}) | |
| 20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ {𝑅, 𝑆}) |
| 21 | 20, 18 | elind 4145 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ ({𝑅, 𝑆} ∩ Cat)) |
| 22 | prex 5370 | . . . . . . . . 9 ⊢ {𝑅, 𝑆} ∈ V | |
| 23 | 22 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → {𝑅, 𝑆} ∈ V) |
| 24 | 1, 13, 23 | catcbas 18003 | . . . . . . 7 ⊢ (𝜑 → (Base‘(CatCat‘{𝑅, 𝑆})) = ({𝑅, 𝑆} ∩ Cat)) |
| 25 | 21, 24 | eleqtrrd 2834 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (Base‘(CatCat‘{𝑅, 𝑆}))) |
| 26 | 5 | oppccat 17623 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 27 | 14, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 28 | 6 | oppccat 17623 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 29 | 15, 28 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ Cat) |
| 30 | 9, 27, 29 | fuccat 17875 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 31 | prid2g 4709 | . . . . . . . . 9 ⊢ (𝑆 ∈ Cat → 𝑆 ∈ {𝑅, 𝑆}) | |
| 32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ {𝑅, 𝑆}) |
| 33 | 32, 30 | elind 4145 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ ({𝑅, 𝑆} ∩ Cat)) |
| 34 | 33, 24 | eleqtrrd 2834 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (Base‘(CatCat‘{𝑅, 𝑆}))) |
| 35 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 4, 14, 15, 25, 34 | fucoppc 49442 | . . . . 5 ⊢ (𝜑 → 𝐹(𝑅(Iso‘(CatCat‘{𝑅, 𝑆}))𝑆)𝐺) |
| 36 | df-br 5087 | . . . . 5 ⊢ (𝐹(𝑅(Iso‘(CatCat‘{𝑅, 𝑆}))𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑅(Iso‘(CatCat‘{𝑅, 𝑆}))𝑆)) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑅(Iso‘(CatCat‘{𝑅, 𝑆}))𝑆)) |
| 38 | 1, 2, 3, 4, 37 | catcisoi 49432 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)) ∧ (1st ‘〈𝐹, 𝐺〉):(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 39 | 38 | simpld 494 | . 2 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))) |
| 40 | df-br 5087 | . 2 ⊢ (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ 〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))) | |
| 41 | 39, 40 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 {cpr 4573 〈cop 4577 class class class wbr 5086 I cid 5505 ↾ cres 5613 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 Basecbs 17115 Catccat 17565 oppCatcoppc 17612 Isociso 17648 Func cfunc 17756 Full cful 17806 Faith cfth 17807 Nat cnat 17846 FuncCat cfuc 17847 CatCatccatc 18000 oppFunc coppf 49154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-homf 17571 df-comf 17572 df-oppc 17613 df-sect 17649 df-inv 17650 df-iso 17651 df-func 17760 df-idfu 17761 df-cofu 17762 df-full 17808 df-fth 17809 df-nat 17848 df-fuc 17849 df-catc 18001 df-oppf 49155 |
| This theorem is referenced by: fucoppcfunc 49444 lmddu 49699 |
| Copyright terms: Public domain | W3C validator |