Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgrtrirex Structured version   Visualization version   GIF version

Theorem usgrgrtrirex 47851
Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.)
Hypotheses
Ref Expression
usgrgrtrirex.v 𝑉 = (Vtx‘𝐺)
usgrgrtrirex.e 𝐸 = (Edg‘𝐺)
usgrgrtrirex.n 𝑁 = (𝐺 NeighbVtx 𝑎)
Assertion
Ref Expression
usgrgrtrirex (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝑁,𝑏,𝑐,𝑡   𝑉,𝑎,𝑏,𝑐,𝑡
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem usgrgrtrirex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrgrtrirex.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgrgrtrirex.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2isgrtri 47844 . . 3 (𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
43exbii 1847 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
5 rexcom4 3272 . . 3 (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6 fveqeq2 6894 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
76adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
8 neeq1 2993 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → (𝑏𝑐𝑦𝑐))
9 preq1 4713 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → {𝑏, 𝑐} = {𝑦, 𝑐})
109eleq1d 2818 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑐} ∈ 𝐸))
118, 10anbi12d 632 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ (𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸)))
12 neeq2 2994 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → (𝑦𝑐𝑦𝑧))
13 preq2 4714 . . . . . . . . . . . . . . 15 (𝑐 = 𝑧 → {𝑦, 𝑐} = {𝑦, 𝑧})
1413eleq1d 2818 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → ({𝑦, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
1512, 14anbi12d 632 . . . . . . . . . . . . 13 (𝑐 = 𝑧 → ((𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸) ↔ (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸)))
16 prcom 4712 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑦} = {𝑦, 𝑎}
1716eleq1i 2824 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑎} ∈ 𝐸)
182nbusgreledg 29297 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑦, 𝑎} ∈ 𝐸))
1918biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2017, 19sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
21203ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2221com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2524a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))))
26253imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))
27 usgrgrtrirex.n . . . . . . . . . . . . . 14 𝑁 = (𝐺 NeighbVtx 𝑎)
2826, 27eleqtrrdi 2844 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑁)
29 prcom 4712 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑧} = {𝑧, 𝑎}
3029eleq1i 2824 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑎} ∈ 𝐸)
312nbusgreledg 29297 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑧 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑧, 𝑎} ∈ 𝐸))
3231biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3330, 32sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑧} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
34333ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3534com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3736adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3837a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))))
39383imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))
4039, 27eleqtrrdi 2844 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧𝑁)
41 hashtpg 14505 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑎𝑦𝑦𝑧𝑧𝑎) ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
4241bicomd 223 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎)))
4342el3v 3471 . . . . . . . . . . . . . . . 16 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎))
4443simp2bi 1146 . . . . . . . . . . . . . . 15 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → 𝑦𝑧)
45443ad2ant2 1134 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑧)
46 simp33 1211 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → {𝑦, 𝑧} ∈ 𝐸)
4745, 46jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸))
4811, 15, 28, 40, 472rspcedvdw 3619 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))
49483exp 1119 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5049adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
517, 50sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5251ex 412 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))))
53523impd 1348 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5453rexlimdvva 3200 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5554exlimdv 1932 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5627eleq2i 2825 . . . . . . . . . 10 (𝑏𝑁𝑏 ∈ (𝐺 NeighbVtx 𝑎))
572nbusgreledg 29297 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑏, 𝑎} ∈ 𝐸))
5856, 57bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑏𝑁 ↔ {𝑏, 𝑎} ∈ 𝐸))
5927eleq2i 2825 . . . . . . . . . 10 (𝑐𝑁𝑐 ∈ (𝐺 NeighbVtx 𝑎))
602nbusgreledg 29297 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑐 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑐, 𝑎} ∈ 𝐸))
6159, 60bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑐𝑁 ↔ {𝑐, 𝑎} ∈ 𝐸))
6258, 61anbi12d 632 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
6362adantr 480 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
64 tpex 7747 . . . . . . . . . 10 {𝑎, 𝑏, 𝑐} ∈ V
6564a1i 11 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} ∈ V)
66 tpeq2 4723 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑎, 𝑦, 𝑧} = {𝑎, 𝑏, 𝑧})
6766eqeq2d 2745 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧}))
68 preq2 4714 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
6968eleq1d 2818 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
70 preq1 4713 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑦, 𝑧} = {𝑏, 𝑧})
7170eleq1d 2818 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑧} ∈ 𝐸))
7269, 713anbi13d 1439 . . . . . . . . . . 11 (𝑦 = 𝑏 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)))
7367, 723anbi13d 1439 . . . . . . . . . 10 (𝑦 = 𝑏 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸))))
74 tpeq3 4724 . . . . . . . . . . . 12 (𝑧 = 𝑐 → {𝑎, 𝑏, 𝑧} = {𝑎, 𝑏, 𝑐})
7574eqeq2d 2745 . . . . . . . . . . 11 (𝑧 = 𝑐 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}))
76 preq2 4714 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑎, 𝑧} = {𝑎, 𝑐})
7776eleq1d 2818 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸))
78 preq2 4714 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑏, 𝑧} = {𝑏, 𝑐})
7978eleq1d 2818 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑏, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑐} ∈ 𝐸))
8077, 793anbi23d 1440 . . . . . . . . . . 11 (𝑧 = 𝑐 → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
8175, 803anbi13d 1439 . . . . . . . . . 10 (𝑧 = 𝑐 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))))
82 usgruhgr 29130 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8382adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → 𝐺 ∈ UHGraph)
842eleq2i 2825 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ (Edg‘𝐺))
8584biimpi 216 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ∈ 𝐸 → {𝑏, 𝑎} ∈ (Edg‘𝐺))
8685adantr 480 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑏, 𝑎} ∈ (Edg‘𝐺))
87 vex 3467 . . . . . . . . . . . . . 14 𝑏 ∈ V
8887prid1 4742 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏, 𝑎}
8988a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ∈ {𝑏, 𝑎})
90 uhgredgrnv 29074 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑏, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑏 ∈ {𝑏, 𝑎}) → 𝑏 ∈ (Vtx‘𝐺))
9183, 86, 89, 90syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ (Vtx‘𝐺))
9291, 1eleqtrrdi 2844 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑉)
932eleq2i 2825 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
9493biimpi 216 . . . . . . . . . . . . 13 ({𝑐, 𝑎} ∈ 𝐸 → {𝑐, 𝑎} ∈ (Edg‘𝐺))
9594adantl 481 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑐, 𝑎} ∈ (Edg‘𝐺))
96 vex 3467 . . . . . . . . . . . . . 14 𝑐 ∈ V
9796prid1 4742 . . . . . . . . . . . . 13 𝑐 ∈ {𝑐, 𝑎}
9897a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑐 ∈ {𝑐, 𝑎})
99 uhgredgrnv 29074 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑐 ∈ {𝑐, 𝑎}) → 𝑐 ∈ (Vtx‘𝐺))
10083, 95, 98, 99syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ (Vtx‘𝐺))
101100, 1eleqtrrdi 2844 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑉)
102 eqidd 2735 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐})
1032usgredgne 29150 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑏𝑎)
104103necomd 2986 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑎𝑏)
105104ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑎𝑏)
1061053adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑎𝑏)
107 simpl 482 . . . . . . . . . . . . . 14 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏𝑐)
1081073ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑐)
1092usgredgne 29150 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑐, 𝑎} ∈ 𝐸) → 𝑐𝑎)
110109ad2ant2rl 749 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑐𝑎)
1111103adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑎)
112106, 108, 1113jca 1128 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (𝑎𝑏𝑏𝑐𝑐𝑎))
113 hashtpg 14505 . . . . . . . . . . . . 13 ((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
114113el3v 3471 . . . . . . . . . . . 12 ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)
115112, 114sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (♯‘{𝑎, 𝑏, 𝑐}) = 3)
116 prcom 4712 . . . . . . . . . . . . . . . 16 {𝑏, 𝑎} = {𝑎, 𝑏}
117116eleq1i 2824 . . . . . . . . . . . . . . 15 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)
118117biimpi 216 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸)
119118adantr 480 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
1201193ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏} ∈ 𝐸)
121 prcom 4712 . . . . . . . . . . . . . . . 16 {𝑐, 𝑎} = {𝑎, 𝑐}
122121eleq1i 2824 . . . . . . . . . . . . . . 15 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸)
123122biimpi 216 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 → {𝑎, 𝑐} ∈ 𝐸)
124123adantl 481 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑐} ∈ 𝐸)
1251243ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑐} ∈ 𝐸)
126 simpr 484 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → {𝑏, 𝑐} ∈ 𝐸)
1271263ad2ant3 1135 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑏, 𝑐} ∈ 𝐸)
128120, 125, 1273jca 1128 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
129102, 115, 1283jca 1128 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
13073, 81, 92, 101, 1292rspcedvdw 3619 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
131 eqeq1 2738 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → (𝑡 = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧}))
132 fveqeq2 6894 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
133131, 1323anbi12d 1438 . . . . . . . . . 10 (𝑡 = {𝑎, 𝑏, 𝑐} → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
1341332rexbidv 3209 . . . . . . . . 9 (𝑡 = {𝑎, 𝑏, 𝑐} → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13565, 130, 134spcedv 3581 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
1361353exp 1119 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
13763, 136sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
138137rexlimdvv 3199 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13955, 138impbid 212 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
140139rexbidva 3164 . . 3 (𝐺 ∈ USGraph → (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1415, 140bitr3id 285 . 2 (𝐺 ∈ USGraph → (∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1424, 141bitrid 283 1 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2931  wrex 3059  Vcvv 3463  {cpr 4608  {ctp 4610  cfv 6540  (class class class)co 7412  3c3 12303  chash 14350  Vtxcvtx 28940  Edgcedg 28991  UHGraphcuhgr 29000  USGraphcusgr 29093   NeighbVtx cnbgr 29276  GrTrianglescgrtri 47838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-3o 8489  df-oadd 8491  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-fz 13529  df-fzo 13676  df-hash 14351  df-edg 28992  df-uhgr 29002  df-upgr 29026  df-umgr 29027  df-uspgr 29094  df-usgr 29095  df-nbgr 29277  df-grtri 47839
This theorem is referenced by:  usgrexmpl2trifr  47930  gpg3kgrtriex  47979
  Copyright terms: Public domain W3C validator