| Step | Hyp | Ref
| Expression |
| 1 | | usgrgrtrirex.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | usgrgrtrirex.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
| 3 | 1, 2 | isgrtri 47844 |
. . 3
⊢ (𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 4 | 3 | exbii 1847 |
. 2
⊢
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 5 | | rexcom4 3272 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 6 | | fveqeq2 6894 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
| 8 | | neeq1 2993 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑦 → (𝑏 ≠ 𝑐 ↔ 𝑦 ≠ 𝑐)) |
| 9 | | preq1 4713 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → {𝑏, 𝑐} = {𝑦, 𝑐}) |
| 10 | 9 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑦 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑐} ∈ 𝐸)) |
| 11 | 8, 10 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑦 → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ (𝑦 ≠ 𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸))) |
| 12 | | neeq2 2994 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑧 → (𝑦 ≠ 𝑐 ↔ 𝑦 ≠ 𝑧)) |
| 13 | | preq2 4714 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑧 → {𝑦, 𝑐} = {𝑦, 𝑧}) |
| 14 | 13 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑧 → ({𝑦, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) |
| 15 | 12, 14 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑧 → ((𝑦 ≠ 𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸) ↔ (𝑦 ≠ 𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 16 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑎, 𝑦} = {𝑦, 𝑎} |
| 17 | 16 | eleq1i 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑎} ∈ 𝐸) |
| 18 | 2 | nbusgreledg 29297 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑦, 𝑎} ∈ 𝐸)) |
| 19 | 18 | biimprcd 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑦, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 20 | 17, 19 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑎, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 22 | 21 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
| 25 | 24 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))) |
| 26 | 25 | 3imp 1110 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)) |
| 27 | | usgrgrtrirex.n |
. . . . . . . . . . . . . 14
⊢ 𝑁 = (𝐺 NeighbVtx 𝑎) |
| 28 | 26, 27 | eleqtrrdi 2844 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ 𝑁) |
| 29 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑎, 𝑧} = {𝑧, 𝑎} |
| 30 | 29 | eleq1i 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑎} ∈ 𝐸) |
| 31 | 2 | nbusgreledg 29297 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USGraph → (𝑧 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑧, 𝑎} ∈ 𝐸)) |
| 32 | 31 | biimprcd 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 33 | 30, 32 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑎, 𝑧} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 34 | 33 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 35 | 34 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
| 38 | 37 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))) |
| 39 | 38 | 3imp 1110 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)) |
| 40 | 39, 27 | eleqtrrdi 2844 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ 𝑁) |
| 41 | | hashtpg 14505 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
| 42 | 41 | bicomd 223 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) →
((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎))) |
| 43 | 42 | el3v 3471 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘{𝑎,
𝑦, 𝑧}) = 3 ↔ (𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎)) |
| 44 | 43 | simp2bi 1146 |
. . . . . . . . . . . . . . 15
⊢
((♯‘{𝑎,
𝑦, 𝑧}) = 3 → 𝑦 ≠ 𝑧) |
| 45 | 44 | 3ad2ant2 1134 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ≠ 𝑧) |
| 46 | | simp33 1211 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → {𝑦, 𝑧} ∈ 𝐸) |
| 47 | 45, 46 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑦 ≠ 𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
| 48 | 11, 15, 28, 40, 47 | 2rspcedvdw 3619 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
| 49 | 48 | 3exp 1119 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
| 50 | 49 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
| 51 | 7, 50 | sylbid 240 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
| 52 | 51 | ex 412 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))) |
| 53 | 52 | 3impd 1348 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 54 | 53 | rexlimdvva 3200 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 55 | 54 | exlimdv 1932 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 56 | 27 | eleq2i 2825 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝑁 ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
| 57 | 2 | nbusgreledg 29297 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑏, 𝑎} ∈ 𝐸)) |
| 58 | 56, 57 | bitrid 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑏 ∈ 𝑁 ↔ {𝑏, 𝑎} ∈ 𝐸)) |
| 59 | 27 | eleq2i 2825 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝑁 ↔ 𝑐 ∈ (𝐺 NeighbVtx 𝑎)) |
| 60 | 2 | nbusgreledg 29297 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑐 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑐, 𝑎} ∈ 𝐸)) |
| 61 | 59, 60 | bitrid 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑐 ∈ 𝑁 ↔ {𝑐, 𝑎} ∈ 𝐸)) |
| 62 | 58, 61 | anbi12d 632 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
| 63 | 62 | adantr 480 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
| 64 | | tpex 7747 |
. . . . . . . . . 10
⊢ {𝑎, 𝑏, 𝑐} ∈ V |
| 65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} ∈ V) |
| 66 | | tpeq2 4723 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → {𝑎, 𝑦, 𝑧} = {𝑎, 𝑏, 𝑧}) |
| 67 | 66 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧})) |
| 68 | | preq2 4714 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏}) |
| 69 | 68 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
| 70 | | preq1 4713 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → {𝑦, 𝑧} = {𝑏, 𝑧}) |
| 71 | 70 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑧} ∈ 𝐸)) |
| 72 | 69, 71 | 3anbi13d 1439 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸))) |
| 73 | 67, 72 | 3anbi13d 1439 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)))) |
| 74 | | tpeq3 4724 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → {𝑎, 𝑏, 𝑧} = {𝑎, 𝑏, 𝑐}) |
| 75 | 74 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑐 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐})) |
| 76 | | preq2 4714 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑐 → {𝑎, 𝑧} = {𝑎, 𝑐}) |
| 77 | 76 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸)) |
| 78 | | preq2 4714 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑐 → {𝑏, 𝑧} = {𝑏, 𝑐}) |
| 79 | 78 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → ({𝑏, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑐} ∈ 𝐸)) |
| 80 | 77, 79 | 3anbi23d 1440 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑐 → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 81 | 75, 80 | 3anbi13d 1439 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑐 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
| 82 | | usgruhgr 29130 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UHGraph) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → 𝐺 ∈ UHGraph) |
| 84 | 2 | eleq2i 2825 |
. . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
| 85 | 84 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ ({𝑏, 𝑎} ∈ 𝐸 → {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . 12
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
| 87 | | vex 3467 |
. . . . . . . . . . . . . 14
⊢ 𝑏 ∈ V |
| 88 | 87 | prid1 4742 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ {𝑏, 𝑎} |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ∈ {𝑏, 𝑎}) |
| 90 | | uhgredgrnv 29074 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ {𝑏, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑏 ∈ {𝑏, 𝑎}) → 𝑏 ∈ (Vtx‘𝐺)) |
| 91 | 83, 86, 89, 90 | syl3an 1160 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ (Vtx‘𝐺)) |
| 92 | 91, 1 | eleqtrrdi 2844 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ 𝑉) |
| 93 | 2 | eleq2i 2825 |
. . . . . . . . . . . . . 14
⊢ ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
| 94 | 93 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ ({𝑐, 𝑎} ∈ 𝐸 → {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
| 95 | 94 | adantl 481 |
. . . . . . . . . . . 12
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
| 96 | | vex 3467 |
. . . . . . . . . . . . . 14
⊢ 𝑐 ∈ V |
| 97 | 96 | prid1 4742 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ {𝑐, 𝑎} |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑐 ∈ {𝑐, 𝑎}) |
| 99 | | uhgredgrnv 29074 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑐 ∈ {𝑐, 𝑎}) → 𝑐 ∈ (Vtx‘𝐺)) |
| 100 | 83, 95, 98, 99 | syl3an 1160 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ (Vtx‘𝐺)) |
| 101 | 100, 1 | eleqtrrdi 2844 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ 𝑉) |
| 102 | | eqidd 2735 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}) |
| 103 | 2 | usgredgne 29150 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑏 ≠ 𝑎) |
| 104 | 103 | necomd 2986 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
| 105 | 104 | ad2ant2r 747 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑎 ≠ 𝑏) |
| 106 | 105 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑎 ≠ 𝑏) |
| 107 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ≠ 𝑐) |
| 108 | 107 | 3ad2ant3 1135 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ≠ 𝑐) |
| 109 | 2 | usgredgne 29150 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝑐, 𝑎} ∈ 𝐸) → 𝑐 ≠ 𝑎) |
| 110 | 109 | ad2ant2rl 749 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑐 ≠ 𝑎) |
| 111 | 110 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ≠ 𝑎) |
| 112 | 106, 108,
111 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) |
| 113 | | hashtpg 14505 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V) → ((𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)) |
| 114 | 113 | el3v 3471 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 115 | 112, 114 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
| 116 | | prcom 4712 |
. . . . . . . . . . . . . . . 16
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
| 117 | 116 | eleq1i 2824 |
. . . . . . . . . . . . . . 15
⊢ ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸) |
| 118 | 117 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸) |
| 119 | 118 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸) |
| 120 | 119 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏} ∈ 𝐸) |
| 121 | | prcom 4712 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐, 𝑎} = {𝑎, 𝑐} |
| 122 | 121 | eleq1i 2824 |
. . . . . . . . . . . . . . 15
⊢ ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸) |
| 123 | 122 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ ({𝑐, 𝑎} ∈ 𝐸 → {𝑎, 𝑐} ∈ 𝐸) |
| 124 | 123 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑐} ∈ 𝐸) |
| 125 | 124 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑐} ∈ 𝐸) |
| 126 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → {𝑏, 𝑐} ∈ 𝐸) |
| 127 | 126 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑏, 𝑐} ∈ 𝐸) |
| 128 | 120, 125,
127 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
| 129 | 102, 115,
128 | 3jca 1128 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 130 | 73, 81, 92, 101, 129 | 2rspcedvdw 3619 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 131 | | eqeq1 2738 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → (𝑡 = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧})) |
| 132 | | fveqeq2 6894 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)) |
| 133 | 131, 132 | 3anbi12d 1438 |
. . . . . . . . . 10
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 134 | 133 | 2rexbidv 3209 |
. . . . . . . . 9
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 135 | 65, 130, 134 | spcedv 3581 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 136 | 135 | 3exp 1119 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 137 | 63, 136 | sylbid 240 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 138 | 137 | rexlimdvv 3199 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 139 | 55, 138 | impbid 212 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 140 | 139 | rexbidva 3164 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑎 ∈ 𝑉 ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 141 | 5, 140 | bitr3id 285 |
. 2
⊢ (𝐺 ∈ USGraph →
(∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
| 142 | 4, 141 | bitrid 283 |
1
⊢ (𝐺 ∈ USGraph →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |