Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgrtrirex Structured version   Visualization version   GIF version

Theorem usgrgrtrirex 47960
Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.)
Hypotheses
Ref Expression
usgrgrtrirex.v 𝑉 = (Vtx‘𝐺)
usgrgrtrirex.e 𝐸 = (Edg‘𝐺)
usgrgrtrirex.n 𝑁 = (𝐺 NeighbVtx 𝑎)
Assertion
Ref Expression
usgrgrtrirex (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝑁,𝑏,𝑐,𝑡   𝑉,𝑎,𝑏,𝑐,𝑡
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem usgrgrtrirex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrgrtrirex.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgrgrtrirex.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2isgrtri 47953 . . 3 (𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
43exbii 1849 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
5 rexcom4 3257 . . 3 (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6 fveqeq2 6826 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
76adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
8 neeq1 2988 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → (𝑏𝑐𝑦𝑐))
9 preq1 4684 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → {𝑏, 𝑐} = {𝑦, 𝑐})
109eleq1d 2814 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑐} ∈ 𝐸))
118, 10anbi12d 632 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ (𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸)))
12 neeq2 2989 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → (𝑦𝑐𝑦𝑧))
13 preq2 4685 . . . . . . . . . . . . . . 15 (𝑐 = 𝑧 → {𝑦, 𝑐} = {𝑦, 𝑧})
1413eleq1d 2814 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → ({𝑦, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
1512, 14anbi12d 632 . . . . . . . . . . . . 13 (𝑐 = 𝑧 → ((𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸) ↔ (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸)))
16 prcom 4683 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑦} = {𝑦, 𝑎}
1716eleq1i 2820 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑎} ∈ 𝐸)
182nbusgreledg 29324 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑦, 𝑎} ∈ 𝐸))
1918biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2017, 19sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
21203ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2221com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2524a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))))
26253imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))
27 usgrgrtrirex.n . . . . . . . . . . . . . 14 𝑁 = (𝐺 NeighbVtx 𝑎)
2826, 27eleqtrrdi 2840 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑁)
29 prcom 4683 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑧} = {𝑧, 𝑎}
3029eleq1i 2820 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑎} ∈ 𝐸)
312nbusgreledg 29324 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑧 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑧, 𝑎} ∈ 𝐸))
3231biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3330, 32sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑧} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
34333ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3534com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3736adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3837a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))))
39383imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))
4039, 27eleqtrrdi 2840 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧𝑁)
41 hashtpg 14384 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑎𝑦𝑦𝑧𝑧𝑎) ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
4241bicomd 223 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎)))
4342el3v 3442 . . . . . . . . . . . . . . . 16 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎))
4443simp2bi 1146 . . . . . . . . . . . . . . 15 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → 𝑦𝑧)
45443ad2ant2 1134 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑧)
46 simp33 1212 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → {𝑦, 𝑧} ∈ 𝐸)
4745, 46jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸))
4811, 15, 28, 40, 472rspcedvdw 3589 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))
49483exp 1119 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5049adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
517, 50sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5251ex 412 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))))
53523impd 1349 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5453rexlimdvva 3187 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5554exlimdv 1934 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5627eleq2i 2821 . . . . . . . . . 10 (𝑏𝑁𝑏 ∈ (𝐺 NeighbVtx 𝑎))
572nbusgreledg 29324 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑏, 𝑎} ∈ 𝐸))
5856, 57bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑏𝑁 ↔ {𝑏, 𝑎} ∈ 𝐸))
5927eleq2i 2821 . . . . . . . . . 10 (𝑐𝑁𝑐 ∈ (𝐺 NeighbVtx 𝑎))
602nbusgreledg 29324 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑐 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑐, 𝑎} ∈ 𝐸))
6159, 60bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑐𝑁 ↔ {𝑐, 𝑎} ∈ 𝐸))
6258, 61anbi12d 632 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
6362adantr 480 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
64 tpex 7674 . . . . . . . . . 10 {𝑎, 𝑏, 𝑐} ∈ V
6564a1i 11 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} ∈ V)
66 tpeq2 4694 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑎, 𝑦, 𝑧} = {𝑎, 𝑏, 𝑧})
6766eqeq2d 2741 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧}))
68 preq2 4685 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
6968eleq1d 2814 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
70 preq1 4684 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑦, 𝑧} = {𝑏, 𝑧})
7170eleq1d 2814 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑧} ∈ 𝐸))
7269, 713anbi13d 1440 . . . . . . . . . . 11 (𝑦 = 𝑏 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)))
7367, 723anbi13d 1440 . . . . . . . . . 10 (𝑦 = 𝑏 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸))))
74 tpeq3 4695 . . . . . . . . . . . 12 (𝑧 = 𝑐 → {𝑎, 𝑏, 𝑧} = {𝑎, 𝑏, 𝑐})
7574eqeq2d 2741 . . . . . . . . . . 11 (𝑧 = 𝑐 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}))
76 preq2 4685 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑎, 𝑧} = {𝑎, 𝑐})
7776eleq1d 2814 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸))
78 preq2 4685 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑏, 𝑧} = {𝑏, 𝑐})
7978eleq1d 2814 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑏, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑐} ∈ 𝐸))
8077, 793anbi23d 1441 . . . . . . . . . . 11 (𝑧 = 𝑐 → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
8175, 803anbi13d 1440 . . . . . . . . . 10 (𝑧 = 𝑐 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))))
82 usgruhgr 29157 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8382adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → 𝐺 ∈ UHGraph)
842eleq2i 2821 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ (Edg‘𝐺))
8584biimpi 216 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ∈ 𝐸 → {𝑏, 𝑎} ∈ (Edg‘𝐺))
8685adantr 480 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑏, 𝑎} ∈ (Edg‘𝐺))
87 vex 3438 . . . . . . . . . . . . . 14 𝑏 ∈ V
8887prid1 4713 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏, 𝑎}
8988a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ∈ {𝑏, 𝑎})
90 uhgredgrnv 29101 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑏, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑏 ∈ {𝑏, 𝑎}) → 𝑏 ∈ (Vtx‘𝐺))
9183, 86, 89, 90syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ (Vtx‘𝐺))
9291, 1eleqtrrdi 2840 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑉)
932eleq2i 2821 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
9493biimpi 216 . . . . . . . . . . . . 13 ({𝑐, 𝑎} ∈ 𝐸 → {𝑐, 𝑎} ∈ (Edg‘𝐺))
9594adantl 481 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑐, 𝑎} ∈ (Edg‘𝐺))
96 vex 3438 . . . . . . . . . . . . . 14 𝑐 ∈ V
9796prid1 4713 . . . . . . . . . . . . 13 𝑐 ∈ {𝑐, 𝑎}
9897a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑐 ∈ {𝑐, 𝑎})
99 uhgredgrnv 29101 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑐 ∈ {𝑐, 𝑎}) → 𝑐 ∈ (Vtx‘𝐺))
10083, 95, 98, 99syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ (Vtx‘𝐺))
101100, 1eleqtrrdi 2840 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑉)
102 eqidd 2731 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐})
1032usgredgne 29177 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑏𝑎)
104103necomd 2981 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑎𝑏)
105104ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑎𝑏)
1061053adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑎𝑏)
107 simpl 482 . . . . . . . . . . . . . 14 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏𝑐)
1081073ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑐)
1092usgredgne 29177 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑐, 𝑎} ∈ 𝐸) → 𝑐𝑎)
110109ad2ant2rl 749 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑐𝑎)
1111103adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑎)
112106, 108, 1113jca 1128 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (𝑎𝑏𝑏𝑐𝑐𝑎))
113 hashtpg 14384 . . . . . . . . . . . . 13 ((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
114113el3v 3442 . . . . . . . . . . . 12 ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)
115112, 114sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (♯‘{𝑎, 𝑏, 𝑐}) = 3)
116 prcom 4683 . . . . . . . . . . . . . . . 16 {𝑏, 𝑎} = {𝑎, 𝑏}
117116eleq1i 2820 . . . . . . . . . . . . . . 15 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)
118117biimpi 216 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸)
119118adantr 480 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
1201193ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏} ∈ 𝐸)
121 prcom 4683 . . . . . . . . . . . . . . . 16 {𝑐, 𝑎} = {𝑎, 𝑐}
122121eleq1i 2820 . . . . . . . . . . . . . . 15 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸)
123122biimpi 216 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 → {𝑎, 𝑐} ∈ 𝐸)
124123adantl 481 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑐} ∈ 𝐸)
1251243ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑐} ∈ 𝐸)
126 simpr 484 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → {𝑏, 𝑐} ∈ 𝐸)
1271263ad2ant3 1135 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑏, 𝑐} ∈ 𝐸)
128120, 125, 1273jca 1128 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
129102, 115, 1283jca 1128 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
13073, 81, 92, 101, 1292rspcedvdw 3589 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
131 eqeq1 2734 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → (𝑡 = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧}))
132 fveqeq2 6826 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
133131, 1323anbi12d 1439 . . . . . . . . . 10 (𝑡 = {𝑎, 𝑏, 𝑐} → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
1341332rexbidv 3195 . . . . . . . . 9 (𝑡 = {𝑎, 𝑏, 𝑐} → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13565, 130, 134spcedv 3551 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
1361353exp 1119 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
13763, 136sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
138137rexlimdvv 3186 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13955, 138impbid 212 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
140139rexbidva 3152 . . 3 (𝐺 ∈ USGraph → (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1415, 140bitr3id 285 . 2 (𝐺 ∈ USGraph → (∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1424, 141bitrid 283 1 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wrex 3054  Vcvv 3434  {cpr 4576  {ctp 4578  cfv 6477  (class class class)co 7341  3c3 12173  chash 14229  Vtxcvtx 28967  Edgcedg 29018  UHGraphcuhgr 29027  USGraphcusgr 29120   NeighbVtx cnbgr 29303  GrTrianglescgrtri 47947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-3o 8382  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-edg 29019  df-uhgr 29029  df-upgr 29053  df-umgr 29054  df-uspgr 29121  df-usgr 29122  df-nbgr 29304  df-grtri 47948
This theorem is referenced by:  usgrexmpl2trifr  48047  gpg3kgrtriex  48099
  Copyright terms: Public domain W3C validator