Step | Hyp | Ref
| Expression |
1 | | usgrgrtrirex.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | usgrgrtrirex.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | isgrtri 47724 |
. . 3
⊢ (𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
4 | 3 | exbii 1846 |
. 2
⊢
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
5 | | rexcom4 3289 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
6 | | fveqeq2 6928 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
8 | | neeq1 3005 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑦 → (𝑏 ≠ 𝑐 ↔ 𝑦 ≠ 𝑐)) |
9 | | preq1 4758 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → {𝑏, 𝑐} = {𝑦, 𝑐}) |
10 | 9 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑦 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑐} ∈ 𝐸)) |
11 | 8, 10 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑦 → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ (𝑦 ≠ 𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸))) |
12 | | neeq2 3006 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑧 → (𝑦 ≠ 𝑐 ↔ 𝑦 ≠ 𝑧)) |
13 | | preq2 4759 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑧 → {𝑦, 𝑐} = {𝑦, 𝑧}) |
14 | 13 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑧 → ({𝑦, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) |
15 | 12, 14 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑧 → ((𝑦 ≠ 𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸) ↔ (𝑦 ≠ 𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
16 | | prcom 4757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑎, 𝑦} = {𝑦, 𝑎} |
17 | 16 | eleq1i 2829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑎} ∈ 𝐸) |
18 | 2 | nbusgreledg 29379 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑦, 𝑎} ∈ 𝐸)) |
19 | 18 | biimprcd 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑦, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
20 | 17, 19 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑎, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
21 | 20 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
22 | 21 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))) |
25 | 24 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))) |
26 | 25 | 3imp 1111 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)) |
27 | | usgrgrtrirex.n |
. . . . . . . . . . . . . 14
⊢ 𝑁 = (𝐺 NeighbVtx 𝑎) |
28 | 26, 27 | eleqtrrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ 𝑁) |
29 | | prcom 4757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑎, 𝑧} = {𝑧, 𝑎} |
30 | 29 | eleq1i 2829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑎} ∈ 𝐸) |
31 | 2 | nbusgreledg 29379 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USGraph → (𝑧 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑧, 𝑎} ∈ 𝐸)) |
32 | 31 | biimprcd 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
33 | 30, 32 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑎, 𝑧} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
34 | 33 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
35 | 34 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))) |
38 | 37 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))) |
39 | 38 | 3imp 1111 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)) |
40 | 39, 27 | eleqtrrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ 𝑁) |
41 | | hashtpg 14530 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3)) |
42 | 41 | bicomd 223 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) →
((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎))) |
43 | 42 | el3v 3491 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘{𝑎,
𝑦, 𝑧}) = 3 ↔ (𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎)) |
44 | 43 | simp2bi 1146 |
. . . . . . . . . . . . . . 15
⊢
((♯‘{𝑎,
𝑦, 𝑧}) = 3 → 𝑦 ≠ 𝑧) |
45 | 44 | 3ad2ant2 1134 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ≠ 𝑧) |
46 | | simp33 1211 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → {𝑦, 𝑧} ∈ 𝐸) |
47 | 45, 46 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑦 ≠ 𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
48 | 11, 15, 28, 40, 47 | 2rspcedvdw 3645 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
49 | 48 | 3exp 1119 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
50 | 49 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
51 | 7, 50 | sylbid 240 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
52 | 51 | ex 412 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))) |
53 | 52 | 3impd 1348 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
54 | 53 | rexlimdvva 3215 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
55 | 54 | exlimdv 1932 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
56 | 27 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝑁 ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
57 | 2 | nbusgreledg 29379 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑏, 𝑎} ∈ 𝐸)) |
58 | 56, 57 | bitrid 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑏 ∈ 𝑁 ↔ {𝑏, 𝑎} ∈ 𝐸)) |
59 | 27 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝑁 ↔ 𝑐 ∈ (𝐺 NeighbVtx 𝑎)) |
60 | 2 | nbusgreledg 29379 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑐 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑐, 𝑎} ∈ 𝐸)) |
61 | 59, 60 | bitrid 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑐 ∈ 𝑁 ↔ {𝑐, 𝑎} ∈ 𝐸)) |
62 | 58, 61 | anbi12d 631 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
63 | 62 | adantr 480 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
64 | | tpex 7777 |
. . . . . . . . . 10
⊢ {𝑎, 𝑏, 𝑐} ∈ V |
65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} ∈ V) |
66 | | tpeq2 4768 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → {𝑎, 𝑦, 𝑧} = {𝑎, 𝑏, 𝑧}) |
67 | 66 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧})) |
68 | | preq2 4759 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏}) |
69 | 68 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
70 | | preq1 4758 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → {𝑦, 𝑧} = {𝑏, 𝑧}) |
71 | 70 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑧} ∈ 𝐸)) |
72 | 69, 71 | 3anbi13d 1438 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸))) |
73 | 67, 72 | 3anbi13d 1438 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)))) |
74 | | tpeq3 4769 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → {𝑎, 𝑏, 𝑧} = {𝑎, 𝑏, 𝑐}) |
75 | 74 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑐 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐})) |
76 | | preq2 4759 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑐 → {𝑎, 𝑧} = {𝑎, 𝑐}) |
77 | 76 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸)) |
78 | | preq2 4759 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑐 → {𝑏, 𝑧} = {𝑏, 𝑐}) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑐 → ({𝑏, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑐} ∈ 𝐸)) |
80 | 77, 79 | 3anbi23d 1439 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑐 → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
81 | 75, 80 | 3anbi13d 1438 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑐 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))) |
82 | | usgruhgr 29212 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UHGraph) |
83 | 82 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → 𝐺 ∈ UHGraph) |
84 | 2 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
85 | 84 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ ({𝑏, 𝑎} ∈ 𝐸 → {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
86 | 85 | adantr 480 |
. . . . . . . . . . . 12
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑏, 𝑎} ∈ (Edg‘𝐺)) |
87 | | vex 3486 |
. . . . . . . . . . . . . 14
⊢ 𝑏 ∈ V |
88 | 87 | prid1 4787 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ {𝑏, 𝑎} |
89 | 88 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ∈ {𝑏, 𝑎}) |
90 | | uhgredgrnv 29156 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ {𝑏, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑏 ∈ {𝑏, 𝑎}) → 𝑏 ∈ (Vtx‘𝐺)) |
91 | 83, 86, 89, 90 | syl3an 1160 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ (Vtx‘𝐺)) |
92 | 91, 1 | eleqtrrdi 2849 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ 𝑉) |
93 | 2 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
94 | 93 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ ({𝑐, 𝑎} ∈ 𝐸 → {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
95 | 94 | adantl 481 |
. . . . . . . . . . . 12
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
96 | | vex 3486 |
. . . . . . . . . . . . . 14
⊢ 𝑐 ∈ V |
97 | 96 | prid1 4787 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ {𝑐, 𝑎} |
98 | 97 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑐 ∈ {𝑐, 𝑎}) |
99 | | uhgredgrnv 29156 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑐 ∈ {𝑐, 𝑎}) → 𝑐 ∈ (Vtx‘𝐺)) |
100 | 83, 95, 98, 99 | syl3an 1160 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ (Vtx‘𝐺)) |
101 | 100, 1 | eleqtrrdi 2849 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ 𝑉) |
102 | | eqidd 2735 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}) |
103 | 2 | usgredgne 29232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑏 ≠ 𝑎) |
104 | 103 | necomd 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
105 | 104 | ad2ant2r 746 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑎 ≠ 𝑏) |
106 | 105 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑎 ≠ 𝑏) |
107 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ≠ 𝑐) |
108 | 107 | 3ad2ant3 1135 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ≠ 𝑐) |
109 | 2 | usgredgne 29232 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝑐, 𝑎} ∈ 𝐸) → 𝑐 ≠ 𝑎) |
110 | 109 | ad2ant2rl 748 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑐 ≠ 𝑎) |
111 | 110 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ≠ 𝑎) |
112 | 106, 108,
111 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) |
113 | | hashtpg 14530 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V) → ((𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)) |
114 | 113 | el3v 3491 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
115 | 112, 114 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (♯‘{𝑎, 𝑏, 𝑐}) = 3) |
116 | | prcom 4757 |
. . . . . . . . . . . . . . . 16
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
117 | 116 | eleq1i 2829 |
. . . . . . . . . . . . . . 15
⊢ ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸) |
118 | 117 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ ({𝑏, 𝑎} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸) |
119 | 118 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸) |
120 | 119 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏} ∈ 𝐸) |
121 | | prcom 4757 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐, 𝑎} = {𝑎, 𝑐} |
122 | 121 | eleq1i 2829 |
. . . . . . . . . . . . . . 15
⊢ ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸) |
123 | 122 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ ({𝑐, 𝑎} ∈ 𝐸 → {𝑎, 𝑐} ∈ 𝐸) |
124 | 123 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑐} ∈ 𝐸) |
125 | 124 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑐} ∈ 𝐸) |
126 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → {𝑏, 𝑐} ∈ 𝐸) |
127 | 126 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑏, 𝑐} ∈ 𝐸) |
128 | 120, 125,
127 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
129 | 102, 115,
128 | 3jca 1128 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
130 | 73, 81, 92, 101, 129 | 2rspcedvdw 3645 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
131 | | eqeq1 2738 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → (𝑡 = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧})) |
132 | | fveqeq2 6928 |
. . . . . . . . . . 11
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)) |
133 | 131, 132 | 3anbi12d 1437 |
. . . . . . . . . 10
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
134 | 133 | 2rexbidv 3223 |
. . . . . . . . 9
⊢ (𝑡 = {𝑎, 𝑏, 𝑐} → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
135 | 65, 130, 134 | spcedv 3607 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
136 | 135 | 3exp 1119 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
137 | 63, 136 | sylbid 240 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
138 | 137 | rexlimdvv 3214 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
139 | 55, 138 | impbid 212 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
140 | 139 | rexbidva 3179 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑎 ∈ 𝑉 ∃𝑡∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
141 | 5, 140 | bitr3id 285 |
. 2
⊢ (𝐺 ∈ USGraph →
(∃𝑡∃𝑎 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
142 | 4, 141 | bitrid 283 |
1
⊢ (𝐺 ∈ USGraph →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) |