Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgrtrirex Structured version   Visualization version   GIF version

Theorem usgrgrtrirex 47949
Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.)
Hypotheses
Ref Expression
usgrgrtrirex.v 𝑉 = (Vtx‘𝐺)
usgrgrtrirex.e 𝐸 = (Edg‘𝐺)
usgrgrtrirex.n 𝑁 = (𝐺 NeighbVtx 𝑎)
Assertion
Ref Expression
usgrgrtrirex (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏,𝑐,𝑡   𝑁,𝑏,𝑐,𝑡   𝑉,𝑎,𝑏,𝑐,𝑡
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem usgrgrtrirex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrgrtrirex.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgrgrtrirex.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2isgrtri 47942 . . 3 (𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
43exbii 1848 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
5 rexcom4 3264 . . 3 (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6 fveqeq2 6867 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
76adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
8 neeq1 2987 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → (𝑏𝑐𝑦𝑐))
9 preq1 4697 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → {𝑏, 𝑐} = {𝑦, 𝑐})
109eleq1d 2813 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ({𝑏, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑐} ∈ 𝐸))
118, 10anbi12d 632 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ (𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸)))
12 neeq2 2988 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → (𝑦𝑐𝑦𝑧))
13 preq2 4698 . . . . . . . . . . . . . . 15 (𝑐 = 𝑧 → {𝑦, 𝑐} = {𝑦, 𝑧})
1413eleq1d 2813 . . . . . . . . . . . . . 14 (𝑐 = 𝑧 → ({𝑦, 𝑐} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸))
1512, 14anbi12d 632 . . . . . . . . . . . . 13 (𝑐 = 𝑧 → ((𝑦𝑐 ∧ {𝑦, 𝑐} ∈ 𝐸) ↔ (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸)))
16 prcom 4696 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑦} = {𝑦, 𝑎}
1716eleq1i 2819 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑎} ∈ 𝐸)
182nbusgreledg 29280 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑦, 𝑎} ∈ 𝐸))
1918biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2017, 19sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
21203ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2221com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎)))
2524a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))))
26253imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦 ∈ (𝐺 NeighbVtx 𝑎))
27 usgrgrtrirex.n . . . . . . . . . . . . . 14 𝑁 = (𝐺 NeighbVtx 𝑎)
2826, 27eleqtrrdi 2839 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑁)
29 prcom 4696 . . . . . . . . . . . . . . . . . . . . . 22 {𝑎, 𝑧} = {𝑧, 𝑎}
3029eleq1i 2819 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑎} ∈ 𝐸)
312nbusgreledg 29280 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → (𝑧 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑧, 𝑎} ∈ 𝐸))
3231biimprcd 250 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧, 𝑎} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3330, 32sylbi 217 . . . . . . . . . . . . . . . . . . . 20 ({𝑎, 𝑧} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
34333ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3534com12 32 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3736adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎)))
3837a1d 25 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))))
39383imp 1110 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧 ∈ (𝐺 NeighbVtx 𝑎))
4039, 27eleqtrrdi 2839 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑧𝑁)
41 hashtpg 14450 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑎𝑦𝑦𝑧𝑧𝑎) ↔ (♯‘{𝑎, 𝑦, 𝑧}) = 3))
4241bicomd 223 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎)))
4342el3v 3455 . . . . . . . . . . . . . . . 16 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 ↔ (𝑎𝑦𝑦𝑧𝑧𝑎))
4443simp2bi 1146 . . . . . . . . . . . . . . 15 ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → 𝑦𝑧)
45443ad2ant2 1134 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑦𝑧)
46 simp33 1212 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → {𝑦, 𝑧} ∈ 𝐸)
4745, 46jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑦𝑧 ∧ {𝑦, 𝑧} ∈ 𝐸))
4811, 15, 28, 40, 472rspcedvdw 3602 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ (♯‘{𝑎, 𝑦, 𝑧}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))
49483exp 1119 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5049adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘{𝑎, 𝑦, 𝑧}) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
517, 50sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) ∧ 𝑡 = {𝑎, 𝑦, 𝑧}) → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))))
5251ex 412 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → (𝑡 = {𝑎, 𝑦, 𝑧} → ((♯‘𝑡) = 3 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))))
53523impd 1349 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5453rexlimdvva 3194 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5554exlimdv 1933 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
5627eleq2i 2820 . . . . . . . . . 10 (𝑏𝑁𝑏 ∈ (𝐺 NeighbVtx 𝑎))
572nbusgreledg 29280 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑏, 𝑎} ∈ 𝐸))
5856, 57bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑏𝑁 ↔ {𝑏, 𝑎} ∈ 𝐸))
5927eleq2i 2820 . . . . . . . . . 10 (𝑐𝑁𝑐 ∈ (𝐺 NeighbVtx 𝑎))
602nbusgreledg 29280 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑐 ∈ (𝐺 NeighbVtx 𝑎) ↔ {𝑐, 𝑎} ∈ 𝐸))
6159, 60bitrid 283 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑐𝑁 ↔ {𝑐, 𝑎} ∈ 𝐸))
6258, 61anbi12d 632 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
6362adantr 480 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
64 tpex 7722 . . . . . . . . . 10 {𝑎, 𝑏, 𝑐} ∈ V
6564a1i 11 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} ∈ V)
66 tpeq2 4707 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑎, 𝑦, 𝑧} = {𝑎, 𝑏, 𝑧})
6766eqeq2d 2740 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧}))
68 preq2 4698 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
6968eleq1d 2813 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
70 preq1 4697 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑦, 𝑧} = {𝑏, 𝑧})
7170eleq1d 2813 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑧} ∈ 𝐸))
7269, 713anbi13d 1440 . . . . . . . . . . 11 (𝑦 = 𝑏 → (({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)))
7367, 723anbi13d 1440 . . . . . . . . . 10 (𝑦 = 𝑏 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸))))
74 tpeq3 4708 . . . . . . . . . . . 12 (𝑧 = 𝑐 → {𝑎, 𝑏, 𝑧} = {𝑎, 𝑏, 𝑐})
7574eqeq2d 2740 . . . . . . . . . . 11 (𝑧 = 𝑐 → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}))
76 preq2 4698 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑎, 𝑧} = {𝑎, 𝑐})
7776eleq1d 2813 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑎, 𝑧} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸))
78 preq2 4698 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → {𝑏, 𝑧} = {𝑏, 𝑐})
7978eleq1d 2813 . . . . . . . . . . . 12 (𝑧 = 𝑐 → ({𝑏, 𝑧} ∈ 𝐸 ↔ {𝑏, 𝑐} ∈ 𝐸))
8077, 793anbi23d 1441 . . . . . . . . . . 11 (𝑧 = 𝑐 → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸) ↔ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
8175, 803anbi13d 1440 . . . . . . . . . 10 (𝑧 = 𝑐 → (({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑏, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))))
82 usgruhgr 29113 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8382adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → 𝐺 ∈ UHGraph)
842eleq2i 2820 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ (Edg‘𝐺))
8584biimpi 216 . . . . . . . . . . . . 13 ({𝑏, 𝑎} ∈ 𝐸 → {𝑏, 𝑎} ∈ (Edg‘𝐺))
8685adantr 480 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑏, 𝑎} ∈ (Edg‘𝐺))
87 vex 3451 . . . . . . . . . . . . . 14 𝑏 ∈ V
8887prid1 4726 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏, 𝑎}
8988a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ∈ {𝑏, 𝑎})
90 uhgredgrnv 29057 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑏, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑏 ∈ {𝑏, 𝑎}) → 𝑏 ∈ (Vtx‘𝐺))
9183, 86, 89, 90syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏 ∈ (Vtx‘𝐺))
9291, 1eleqtrrdi 2839 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑉)
932eleq2i 2820 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
9493biimpi 216 . . . . . . . . . . . . 13 ({𝑐, 𝑎} ∈ 𝐸 → {𝑐, 𝑎} ∈ (Edg‘𝐺))
9594adantl 481 . . . . . . . . . . . 12 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑐, 𝑎} ∈ (Edg‘𝐺))
96 vex 3451 . . . . . . . . . . . . . 14 𝑐 ∈ V
9796prid1 4726 . . . . . . . . . . . . 13 𝑐 ∈ {𝑐, 𝑎}
9897a1i 11 . . . . . . . . . . . 12 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑐 ∈ {𝑐, 𝑎})
99 uhgredgrnv 29057 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺) ∧ 𝑐 ∈ {𝑐, 𝑎}) → 𝑐 ∈ (Vtx‘𝐺))
10083, 95, 98, 99syl3an 1160 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐 ∈ (Vtx‘𝐺))
101100, 1eleqtrrdi 2839 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑉)
102 eqidd 2730 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐})
1032usgredgne 29133 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑏𝑎)
104103necomd 2980 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑎} ∈ 𝐸) → 𝑎𝑏)
105104ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑎𝑏)
1061053adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑎𝑏)
107 simpl 482 . . . . . . . . . . . . . 14 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏𝑐)
1081073ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑏𝑐)
1092usgredgne 29133 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑐, 𝑎} ∈ 𝐸) → 𝑐𝑎)
110109ad2ant2rl 749 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝑐𝑎)
1111103adant3 1132 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → 𝑐𝑎)
112106, 108, 1113jca 1128 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (𝑎𝑏𝑏𝑐𝑐𝑎))
113 hashtpg 14450 . . . . . . . . . . . . 13 ((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
114113el3v 3455 . . . . . . . . . . . 12 ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3)
115112, 114sylib 218 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → (♯‘{𝑎, 𝑏, 𝑐}) = 3)
116 prcom 4696 . . . . . . . . . . . . . . . 16 {𝑏, 𝑎} = {𝑎, 𝑏}
117116eleq1i 2819 . . . . . . . . . . . . . . 15 ({𝑏, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)
118117biimpi 216 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸)
119118adantr 480 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
1201193ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑏} ∈ 𝐸)
121 prcom 4696 . . . . . . . . . . . . . . . 16 {𝑐, 𝑎} = {𝑎, 𝑐}
122121eleq1i 2819 . . . . . . . . . . . . . . 15 ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑎, 𝑐} ∈ 𝐸)
123122biimpi 216 . . . . . . . . . . . . . 14 ({𝑐, 𝑎} ∈ 𝐸 → {𝑎, 𝑐} ∈ 𝐸)
124123adantl 481 . . . . . . . . . . . . 13 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → {𝑎, 𝑐} ∈ 𝐸)
1251243ad2ant2 1134 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑎, 𝑐} ∈ 𝐸)
126 simpr 484 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → {𝑏, 𝑐} ∈ 𝐸)
1271263ad2ant3 1135 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → {𝑏, 𝑐} ∈ 𝐸)
128120, 125, 1273jca 1128 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
129102, 115, 1283jca 1128 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑎, 𝑐} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
13073, 81, 92, 101, 1292rspcedvdw 3602 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
131 eqeq1 2733 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → (𝑡 = {𝑎, 𝑦, 𝑧} ↔ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧}))
132 fveqeq2 6867 . . . . . . . . . . 11 (𝑡 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑡) = 3 ↔ (♯‘{𝑎, 𝑏, 𝑐}) = 3))
133131, 1323anbi12d 1439 . . . . . . . . . 10 (𝑡 = {𝑎, 𝑏, 𝑐} → ((𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
1341332rexbidv 3202 . . . . . . . . 9 (𝑡 = {𝑎, 𝑏, 𝑐} → (∃𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑦𝑉𝑧𝑉 ({𝑎, 𝑏, 𝑐} = {𝑎, 𝑦, 𝑧} ∧ (♯‘{𝑎, 𝑏, 𝑐}) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13565, 130, 134spcedv 3564 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑎𝑉) ∧ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
1361353exp 1119 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
13763, 136sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → ((𝑏𝑁𝑐𝑁) → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
138137rexlimdvv 3193 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
13955, 138impbid 212 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑎𝑉) → (∃𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
140139rexbidva 3155 . . 3 (𝐺 ∈ USGraph → (∃𝑎𝑉𝑡𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1415, 140bitr3id 285 . 2 (𝐺 ∈ USGraph → (∃𝑡𝑎𝑉𝑦𝑉𝑧𝑉 (𝑡 = {𝑎, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑎, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1424, 141bitrid 283 1 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎𝑉𝑏𝑁𝑐𝑁 (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  {cpr 4591  {ctp 4593  cfv 6511  (class class class)co 7387  3c3 12242  chash 14295  Vtxcvtx 28923  Edgcedg 28974  UHGraphcuhgr 28983  USGraphcusgr 29076   NeighbVtx cnbgr 29259  GrTrianglescgrtri 47936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-3o 8436  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-nbgr 29260  df-grtri 47937
This theorem is referenced by:  usgrexmpl2trifr  48028  gpg3kgrtriex  48080
  Copyright terms: Public domain W3C validator