![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm4un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 4 equals 12. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm4un | ⊢ (lcm‘(1...4)) = ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 12301 | . . 3 ⊢ 4 ∈ ℕ | |
2 | id 22 | . . . 4 ⊢ (4 ∈ ℕ → 4 ∈ ℕ) | |
3 | 2 | lcmfunnnd 41185 | . . 3 ⊢ (4 ∈ ℕ → (lcm‘(1...4)) = ((lcm‘(1...(4 − 1))) lcm 4)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lcm‘(1...4)) = ((lcm‘(1...(4 − 1))) lcm 4) |
5 | 4m1e3 12347 | . . . . . 6 ⊢ (4 − 1) = 3 | |
6 | 5 | oveq2i 7424 | . . . . 5 ⊢ (1...(4 − 1)) = (1...3) |
7 | 6 | fveq2i 6895 | . . . 4 ⊢ (lcm‘(1...(4 − 1))) = (lcm‘(1...3)) |
8 | lcm3un 41188 | . . . 4 ⊢ (lcm‘(1...3)) = 6 | |
9 | 7, 8 | eqtri 2758 | . . 3 ⊢ (lcm‘(1...(4 − 1))) = 6 |
10 | 9 | oveq1i 7423 | . 2 ⊢ ((lcm‘(1...(4 − 1))) lcm 4) = (6 lcm 4) |
11 | 6lcm4e12 16559 | . 2 ⊢ (6 lcm 4) = ;12 | |
12 | 4, 10, 11 | 3eqtri 2762 | 1 ⊢ (lcm‘(1...4)) = ;12 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ‘cfv 6544 (class class class)co 7413 1c1 11115 − cmin 11450 ℕcn 12218 2c2 12273 3c3 12274 4c4 12275 6c6 12277 ;cdc 12683 ...cfz 13490 lcm clcm 16531 lcmclcmf 16532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-rp 12981 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-prod 15856 df-dvds 16204 df-gcd 16442 df-lcm 16533 df-lcmf 16534 df-prm 16615 |
This theorem is referenced by: lcm5un 41190 |
Copyright terms: Public domain | W3C validator |