Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2r | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39850. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2q.b | ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
lclkrlem2q.n | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
lclkrlem2r.bn | ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) |
Ref | Expression |
---|---|
lclkrlem2r | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
3 | lclkrlem2m.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
4 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
5 | lclkrlem2m.z | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
6 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
7 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
8 | lclkrlem2m.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
9 | lclkrlem2m.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
10 | lclkrlem2m.p | . . . . 5 ⊢ + = (+g‘𝐷) | |
11 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | lclkrlem2m.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
14 | lclkrlem2m.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | lclkrlem2n.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
16 | lclkrlem2n.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
17 | lclkrlem2o.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
18 | lclkrlem2o.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
19 | lclkrlem2o.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
20 | lclkrlem2o.a | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
21 | lclkrlem2o.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
22 | lclkrlem2q.b | . . . . 5 ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) | |
23 | lclkrlem2q.n | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) | |
24 | lclkrlem2r.bn | . . . . 5 ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | lclkrlem2p 39839 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) |
26 | lclkrlem2q.lg | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
27 | lclkrlem2q.le | . . . 4 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
28 | 25, 26, 27 | 3sstr4d 3983 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘𝐸)) |
29 | sseqin2 4167 | . . 3 ⊢ ((𝐿‘𝐺) ⊆ (𝐿‘𝐸) ↔ ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (𝐿‘𝐺)) | |
30 | 28, 29 | sylib 217 | . 2 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (𝐿‘𝐺)) |
31 | 17, 19, 21 | dvhlmod 39427 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
32 | 8, 16, 9, 10, 31, 13, 14 | lkrin 37480 | . 2 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) |
33 | 30, 32 | eqsstrrd 3975 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∩ cin 3901 ⊆ wss 3902 {csn 4578 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 +gcplusg 17060 .rcmulr 17061 Scalarcsca 17063 ·𝑠 cvsca 17064 0gc0g 17248 -gcsg 18676 LSSumclsm 19336 invrcinvr 20008 LSpanclspn 20339 LFnlclfn 37373 LKerclk 37401 LDualcld 37439 HLchlt 37666 LHypclh 38301 DVecHcdvh 39395 ocHcoch 39664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-riotaBAD 37269 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-tpos 8117 df-undef 8164 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lvec 20471 df-lsatoms 37292 df-lfl 37374 df-lkr 37402 df-ldual 37440 df-oposet 37492 df-ol 37494 df-oml 37495 df-covers 37582 df-ats 37583 df-atl 37614 df-cvlat 37638 df-hlat 37667 df-llines 37815 df-lplanes 37816 df-lvols 37817 df-lines 37818 df-psubsp 37820 df-pmap 37821 df-padd 38113 df-lhyp 38305 df-laut 38306 df-ldil 38421 df-ltrn 38422 df-trl 38476 df-tendo 39072 df-edring 39074 df-disoa 39346 df-dvech 39396 df-dib 39456 df-dic 39490 df-dih 39546 df-doch 39665 |
This theorem is referenced by: lclkrlem2s 39842 |
Copyright terms: Public domain | W3C validator |