| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2r | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41527. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
| lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
| lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
| lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
| lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
| lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
| lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
| lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| lclkrlem2q.b | ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
| lclkrlem2q.n | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
| lclkrlem2r.bn | ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) |
| Ref | Expression |
|---|---|
| lclkrlem2r | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrlem2m.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 3 | lclkrlem2m.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 4 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
| 5 | lclkrlem2m.z | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
| 6 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
| 7 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
| 8 | lclkrlem2m.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 9 | lclkrlem2m.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
| 10 | lclkrlem2m.p | . . . . 5 ⊢ + = (+g‘𝐷) | |
| 11 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 13 | lclkrlem2m.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 14 | lclkrlem2m.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 15 | lclkrlem2n.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 16 | lclkrlem2n.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 17 | lclkrlem2o.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 18 | lclkrlem2o.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 19 | lclkrlem2o.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 20 | lclkrlem2o.a | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
| 21 | lclkrlem2o.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 22 | lclkrlem2q.b | . . . . 5 ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) | |
| 23 | lclkrlem2q.n | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) | |
| 24 | lclkrlem2r.bn | . . . . 5 ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | lclkrlem2p 41516 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) |
| 26 | lclkrlem2q.lg | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
| 27 | lclkrlem2q.le | . . . 4 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
| 28 | 25, 26, 27 | 3sstr4d 4002 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘𝐸)) |
| 29 | sseqin2 4186 | . . 3 ⊢ ((𝐿‘𝐺) ⊆ (𝐿‘𝐸) ↔ ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (𝐿‘𝐺)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (𝐿‘𝐺)) |
| 31 | 17, 19, 21 | dvhlmod 41104 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 32 | 8, 16, 9, 10, 31, 13, 14 | lkrin 39157 | . 2 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) |
| 33 | 30, 32 | eqsstrrd 3982 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 -gcsg 18867 LSSumclsm 19564 invrcinvr 20296 LSpanclspn 20877 LFnlclfn 39050 LKerclk 39078 LDualcld 39116 HLchlt 39343 LHypclh 39978 DVecHcdvh 41072 ocHcoch 41341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 df-edring 40751 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 |
| This theorem is referenced by: lclkrlem2s 41519 |
| Copyright terms: Public domain | W3C validator |