Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2r Structured version   Visualization version   GIF version

Theorem lclkrlem2r 38792
Description: Lemma for lclkr 38801. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2o.h 𝐻 = (LHyp‘𝐾)
lclkrlem2o.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2o.a = (LSSum‘𝑈)
lclkrlem2o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2q.le (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
lclkrlem2q.lg (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
lclkrlem2q.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2q.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
lclkrlem2r.bn (𝜑𝐵 = (0g𝑈))
Assertion
Ref Expression
lclkrlem2r (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2r
StepHypRef Expression
1 lclkrlem2m.v . . . . 5 𝑉 = (Base‘𝑈)
2 lclkrlem2m.t . . . . 5 · = ( ·𝑠𝑈)
3 lclkrlem2m.s . . . . 5 𝑆 = (Scalar‘𝑈)
4 lclkrlem2m.q . . . . 5 × = (.r𝑆)
5 lclkrlem2m.z . . . . 5 0 = (0g𝑆)
6 lclkrlem2m.i . . . . 5 𝐼 = (invr𝑆)
7 lclkrlem2m.m . . . . 5 = (-g𝑈)
8 lclkrlem2m.f . . . . 5 𝐹 = (LFnl‘𝑈)
9 lclkrlem2m.d . . . . 5 𝐷 = (LDual‘𝑈)
10 lclkrlem2m.p . . . . 5 + = (+g𝐷)
11 lclkrlem2m.x . . . . 5 (𝜑𝑋𝑉)
12 lclkrlem2m.y . . . . 5 (𝜑𝑌𝑉)
13 lclkrlem2m.e . . . . 5 (𝜑𝐸𝐹)
14 lclkrlem2m.g . . . . 5 (𝜑𝐺𝐹)
15 lclkrlem2n.n . . . . 5 𝑁 = (LSpan‘𝑈)
16 lclkrlem2n.l . . . . 5 𝐿 = (LKer‘𝑈)
17 lclkrlem2o.h . . . . 5 𝐻 = (LHyp‘𝐾)
18 lclkrlem2o.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
19 lclkrlem2o.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
20 lclkrlem2o.a . . . . 5 = (LSSum‘𝑈)
21 lclkrlem2o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 lclkrlem2q.b . . . . 5 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
23 lclkrlem2q.n . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
24 lclkrlem2r.bn . . . . 5 (𝜑𝐵 = (0g𝑈))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24lclkrlem2p 38790 . . . 4 (𝜑 → ( ‘{𝑌}) ⊆ ( ‘{𝑋}))
26 lclkrlem2q.lg . . . 4 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
27 lclkrlem2q.le . . . 4 (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
2825, 26, 273sstr4d 4000 . . 3 (𝜑 → (𝐿𝐺) ⊆ (𝐿𝐸))
29 sseqin2 4177 . . 3 ((𝐿𝐺) ⊆ (𝐿𝐸) ↔ ((𝐿𝐸) ∩ (𝐿𝐺)) = (𝐿𝐺))
3028, 29sylib 221 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) = (𝐿𝐺))
3117, 19, 21dvhlmod 38378 . . 3 (𝜑𝑈 ∈ LMod)
328, 16, 9, 10, 31, 13, 14lkrin 36432 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺)))
3330, 32eqsstrrd 3992 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  cin 3918  wss 3919  {csn 4550  cfv 6345  (class class class)co 7151  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  -gcsg 18107  LSSumclsm 18761  invrcinvr 19426  LSpanclspn 19745  LFnlclfn 36325  LKerclk 36353  LDualcld 36391  HLchlt 36618  LHypclh 37252  DVecHcdvh 38346  ocHcoch 38615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36221
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-tpos 7890  df-undef 7937  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19378  df-dvdsr 19396  df-unit 19397  df-invr 19427  df-dvr 19438  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36244  df-lfl 36326  df-lkr 36354  df-ldual 36392  df-oposet 36444  df-ol 36446  df-oml 36447  df-covers 36534  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619  df-llines 36766  df-lplanes 36767  df-lvols 36768  df-lines 36769  df-psubsp 36771  df-pmap 36772  df-padd 37064  df-lhyp 37256  df-laut 37257  df-ldil 37372  df-ltrn 37373  df-trl 37427  df-tendo 38023  df-edring 38025  df-disoa 38297  df-dvech 38347  df-dib 38407  df-dic 38441  df-dih 38497  df-doch 38616
This theorem is referenced by:  lclkrlem2s  38793
  Copyright terms: Public domain W3C validator