![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2r | Structured version Visualization version GIF version |
Description: Lemma for lclkr 41061. When π΅ is zero, i.e. when π and π are colinear, the intersection of the kernels of πΈ and πΊ equal the kernel of πΊ, so the kernels of πΊ and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | β’ π = (Baseβπ) |
lclkrlem2m.t | β’ Β· = ( Β·π βπ) |
lclkrlem2m.s | β’ π = (Scalarβπ) |
lclkrlem2m.q | β’ Γ = (.rβπ) |
lclkrlem2m.z | β’ 0 = (0gβπ) |
lclkrlem2m.i | β’ πΌ = (invrβπ) |
lclkrlem2m.m | β’ β = (-gβπ) |
lclkrlem2m.f | β’ πΉ = (LFnlβπ) |
lclkrlem2m.d | β’ π· = (LDualβπ) |
lclkrlem2m.p | β’ + = (+gβπ·) |
lclkrlem2m.x | β’ (π β π β π) |
lclkrlem2m.y | β’ (π β π β π) |
lclkrlem2m.e | β’ (π β πΈ β πΉ) |
lclkrlem2m.g | β’ (π β πΊ β πΉ) |
lclkrlem2n.n | β’ π = (LSpanβπ) |
lclkrlem2n.l | β’ πΏ = (LKerβπ) |
lclkrlem2o.h | β’ π» = (LHypβπΎ) |
lclkrlem2o.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2o.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2o.a | β’ β = (LSSumβπ) |
lclkrlem2o.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2q.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2q.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2q.b | β’ π΅ = (π β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π)) |
lclkrlem2q.n | β’ (π β ((πΈ + πΊ)βπ) β 0 ) |
lclkrlem2r.bn | β’ (π β π΅ = (0gβπ)) |
Ref | Expression |
---|---|
lclkrlem2r | β’ (π β (πΏβπΊ) β (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | . . . . 5 β’ π = (Baseβπ) | |
2 | lclkrlem2m.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
3 | lclkrlem2m.s | . . . . 5 β’ π = (Scalarβπ) | |
4 | lclkrlem2m.q | . . . . 5 β’ Γ = (.rβπ) | |
5 | lclkrlem2m.z | . . . . 5 β’ 0 = (0gβπ) | |
6 | lclkrlem2m.i | . . . . 5 β’ πΌ = (invrβπ) | |
7 | lclkrlem2m.m | . . . . 5 β’ β = (-gβπ) | |
8 | lclkrlem2m.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
9 | lclkrlem2m.d | . . . . 5 β’ π· = (LDualβπ) | |
10 | lclkrlem2m.p | . . . . 5 β’ + = (+gβπ·) | |
11 | lclkrlem2m.x | . . . . 5 β’ (π β π β π) | |
12 | lclkrlem2m.y | . . . . 5 β’ (π β π β π) | |
13 | lclkrlem2m.e | . . . . 5 β’ (π β πΈ β πΉ) | |
14 | lclkrlem2m.g | . . . . 5 β’ (π β πΊ β πΉ) | |
15 | lclkrlem2n.n | . . . . 5 β’ π = (LSpanβπ) | |
16 | lclkrlem2n.l | . . . . 5 β’ πΏ = (LKerβπ) | |
17 | lclkrlem2o.h | . . . . 5 β’ π» = (LHypβπΎ) | |
18 | lclkrlem2o.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
19 | lclkrlem2o.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
20 | lclkrlem2o.a | . . . . 5 β’ β = (LSSumβπ) | |
21 | lclkrlem2o.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
22 | lclkrlem2q.b | . . . . 5 β’ π΅ = (π β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π)) | |
23 | lclkrlem2q.n | . . . . 5 β’ (π β ((πΈ + πΊ)βπ) β 0 ) | |
24 | lclkrlem2r.bn | . . . . 5 β’ (π β π΅ = (0gβπ)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | lclkrlem2p 41050 | . . . 4 β’ (π β ( β₯ β{π}) β ( β₯ β{π})) |
26 | lclkrlem2q.lg | . . . 4 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
27 | lclkrlem2q.le | . . . 4 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
28 | 25, 26, 27 | 3sstr4d 4020 | . . 3 β’ (π β (πΏβπΊ) β (πΏβπΈ)) |
29 | sseqin2 4209 | . . 3 β’ ((πΏβπΊ) β (πΏβπΈ) β ((πΏβπΈ) β© (πΏβπΊ)) = (πΏβπΊ)) | |
30 | 28, 29 | sylib 217 | . 2 β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) = (πΏβπΊ)) |
31 | 17, 19, 21 | dvhlmod 40638 | . . 3 β’ (π β π β LMod) |
32 | 8, 16, 9, 10, 31, 13, 14 | lkrin 38691 | . 2 β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) β (πΏβ(πΈ + πΊ))) |
33 | 30, 32 | eqsstrrd 4012 | 1 β’ (π β (πΏβπΊ) β (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β© cin 3939 β wss 3940 {csn 4624 βcfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 .rcmulr 17231 Scalarcsca 17233 Β·π cvsca 17234 0gc0g 17418 -gcsg 18894 LSSumclsm 19591 invrcinvr 20328 LSpanclspn 20857 LFnlclfn 38584 LKerclk 38612 LDualcld 38650 HLchlt 38877 LHypclh 39512 DVecHcdvh 40606 ocHcoch 40875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38480 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-lsatoms 38503 df-lfl 38585 df-lkr 38613 df-ldual 38651 df-oposet 38703 df-ol 38705 df-oml 38706 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 df-hlat 38878 df-llines 39026 df-lplanes 39027 df-lvols 39028 df-lines 39029 df-psubsp 39031 df-pmap 39032 df-padd 39324 df-lhyp 39516 df-laut 39517 df-ldil 39632 df-ltrn 39633 df-trl 39687 df-tendo 40283 df-edring 40285 df-disoa 40557 df-dvech 40607 df-dib 40667 df-dic 40701 df-dih 40757 df-doch 40876 |
This theorem is referenced by: lclkrlem2s 41053 |
Copyright terms: Public domain | W3C validator |