Step | Hyp | Ref
| Expression |
1 | | hgmap11.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
2 | | hgmap11.u |
. . . . . 6
β’ π = ((DVecHβπΎ)βπ) |
3 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2732 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
5 | | hgmap11.k |
. . . . . 6
β’ (π β (πΎ β HL β§ π β π»)) |
6 | 1, 2, 3, 4, 5 | dvh1dim 40616 |
. . . . 5
β’ (π β βπ‘ β (Baseβπ)π‘ β (0gβπ)) |
7 | 6 | adantr 481 |
. . . 4
β’ ((π β§ (πΊβπ) = (πΊβπ)) β βπ‘ β (Baseβπ)π‘ β (0gβπ)) |
8 | | simp1r 1198 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (πΊβπ) = (πΊβπ)) |
9 | 8 | oveq1d 7426 |
. . . . . . . 8
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β ((πΊβπ)( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ‘)) = ((πΊβπ)( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ‘))) |
10 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π βπ) = ( Β·π
βπ) |
11 | | hgmap11.r |
. . . . . . . . 9
β’ π
= (Scalarβπ) |
12 | | hgmap11.b |
. . . . . . . . 9
β’ π΅ = (Baseβπ
) |
13 | | eqid 2732 |
. . . . . . . . 9
β’
((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ) |
14 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π β((LCDualβπΎ)βπ)) = ( Β·π
β((LCDualβπΎ)βπ)) |
15 | | eqid 2732 |
. . . . . . . . 9
β’
((HDMapβπΎ)βπ) = ((HDMapβπΎ)βπ) |
16 | | hgmap11.g |
. . . . . . . . 9
β’ πΊ = ((HGMapβπΎ)βπ) |
17 | | simp1l 1197 |
. . . . . . . . . 10
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π) |
18 | 17, 5 | syl 17 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (πΎ β HL β§ π β π»)) |
19 | | simp2 1137 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π‘ β (Baseβπ)) |
20 | | hgmap11.x |
. . . . . . . . . 10
β’ (π β π β π΅) |
21 | 17, 20 | syl 17 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π β π΅) |
22 | 1, 2, 3, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21 | hgmapvs 41065 |
. . . . . . . 8
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘)) = ((πΊβπ)( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ‘))) |
23 | | hgmap11.y |
. . . . . . . . . 10
β’ (π β π β π΅) |
24 | 17, 23 | syl 17 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π β π΅) |
25 | 1, 2, 3, 10, 11, 12, 13, 14, 15, 16, 18, 19, 24 | hgmapvs 41065 |
. . . . . . . 8
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘)) = ((πΊβπ)( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ‘))) |
26 | 9, 22, 25 | 3eqtr4d 2782 |
. . . . . . 7
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘)) = (((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘))) |
27 | 1, 2, 5 | dvhlmod 40284 |
. . . . . . . . . 10
β’ (π β π β LMod) |
28 | 17, 27 | syl 17 |
. . . . . . . . 9
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π β LMod) |
29 | 3, 11, 10, 12 | lmodvscl 20632 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π΅ β§ π‘ β (Baseβπ)) β (π( Β·π
βπ)π‘) β (Baseβπ)) |
30 | 28, 21, 19, 29 | syl3anc 1371 |
. . . . . . . 8
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (π( Β·π
βπ)π‘) β (Baseβπ)) |
31 | 3, 11, 10, 12 | lmodvscl 20632 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π΅ β§ π‘ β (Baseβπ)) β (π( Β·π
βπ)π‘) β (Baseβπ)) |
32 | 28, 24, 19, 31 | syl3anc 1371 |
. . . . . . . 8
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (π( Β·π
βπ)π‘) β (Baseβπ)) |
33 | 1, 2, 3, 15, 18, 30, 32 | hdmap11 41022 |
. . . . . . 7
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β ((((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘)) = (((HDMapβπΎ)βπ)β(π( Β·π
βπ)π‘)) β (π( Β·π
βπ)π‘) = (π( Β·π
βπ)π‘))) |
34 | 26, 33 | mpbid 231 |
. . . . . 6
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β (π( Β·π
βπ)π‘) = (π( Β·π
βπ)π‘)) |
35 | 1, 2, 5 | dvhlvec 40283 |
. . . . . . . 8
β’ (π β π β LVec) |
36 | 17, 35 | syl 17 |
. . . . . . 7
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π β LVec) |
37 | | simp3 1138 |
. . . . . . 7
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π‘ β (0gβπ)) |
38 | 3, 10, 11, 12, 4, 36, 21, 24, 19, 37 | lvecvscan2 20870 |
. . . . . 6
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β ((π( Β·π
βπ)π‘) = (π( Β·π
βπ)π‘) β π = π)) |
39 | 34, 38 | mpbid 231 |
. . . . 5
β’ (((π β§ (πΊβπ) = (πΊβπ)) β§ π‘ β (Baseβπ) β§ π‘ β (0gβπ)) β π = π) |
40 | 39 | rexlimdv3a 3159 |
. . . 4
β’ ((π β§ (πΊβπ) = (πΊβπ)) β (βπ‘ β (Baseβπ)π‘ β (0gβπ) β π = π)) |
41 | 7, 40 | mpd 15 |
. . 3
β’ ((π β§ (πΊβπ) = (πΊβπ)) β π = π) |
42 | 41 | ex 413 |
. 2
β’ (π β ((πΊβπ) = (πΊβπ) β π = π)) |
43 | | fveq2 6891 |
. 2
β’ (π = π β (πΊβπ) = (πΊβπ)) |
44 | 42, 43 | impbid1 224 |
1
β’ (π β ((πΊβπ) = (πΊβπ) β π = π)) |