![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmap11 | Structured version Visualization version GIF version |
Description: The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015.) |
Ref | Expression |
---|---|
hgmap11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmap11.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmap11.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmap11.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmap11.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmap11.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hgmap11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hgmap11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmap11 | ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmap11.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmap11.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2799 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
4 | eqid 2799 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
5 | hgmap11.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 37463 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈)) |
7 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈)) |
8 | simp1r 1256 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑋) = (𝐺‘𝑌)) | |
9 | 8 | oveq1d 6893 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = ((𝐺‘𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
10 | eqid 2799 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
11 | hgmap11.r | . . . . . . . . 9 ⊢ 𝑅 = (Scalar‘𝑈) | |
12 | hgmap11.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
13 | eqid 2799 | . . . . . . . . 9 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
14 | eqid 2799 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
15 | eqid 2799 | . . . . . . . . 9 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
16 | hgmap11.g | . . . . . . . . 9 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
17 | simp1l 1255 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝜑) | |
18 | 17, 5 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | simp2 1168 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ∈ (Base‘𝑈)) | |
20 | hgmap11.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 17, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑋 ∈ 𝐵) |
22 | 1, 2, 3, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21 | hgmapvs 37912 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠 ‘𝑈)𝑡)) = ((𝐺‘𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
23 | hgmap11.y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
24 | 17, 23 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑌 ∈ 𝐵) |
25 | 1, 2, 3, 10, 11, 12, 13, 14, 15, 16, 18, 19, 24 | hgmapvs 37912 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠 ‘𝑈)𝑡)) = ((𝐺‘𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
26 | 9, 22, 25 | 3eqtr4d 2843 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠 ‘𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠 ‘𝑈)𝑡))) |
27 | 1, 2, 5 | dvhlmod 37131 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
28 | 17, 27 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
29 | 3, 11, 10, 12 | lmodvscl 19198 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑋( ·𝑠 ‘𝑈)𝑡) ∈ (Base‘𝑈)) |
30 | 28, 21, 19, 29 | syl3anc 1491 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋( ·𝑠 ‘𝑈)𝑡) ∈ (Base‘𝑈)) |
31 | 3, 11, 10, 12 | lmodvscl 19198 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑌( ·𝑠 ‘𝑈)𝑡) ∈ (Base‘𝑈)) |
32 | 28, 24, 19, 31 | syl3anc 1491 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑌( ·𝑠 ‘𝑈)𝑡) ∈ (Base‘𝑈)) |
33 | 1, 2, 3, 15, 18, 30, 32 | hdmap11 37869 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠 ‘𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠 ‘𝑈)𝑡)) ↔ (𝑋( ·𝑠 ‘𝑈)𝑡) = (𝑌( ·𝑠 ‘𝑈)𝑡))) |
34 | 26, 33 | mpbid 224 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋( ·𝑠 ‘𝑈)𝑡) = (𝑌( ·𝑠 ‘𝑈)𝑡)) |
35 | 1, 2, 5 | dvhlvec 37130 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
36 | 17, 35 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑈 ∈ LVec) |
37 | simp3 1169 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ≠ (0g‘𝑈)) | |
38 | 3, 10, 11, 12, 4, 36, 21, 24, 19, 37 | lvecvscan2 19433 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝑋( ·𝑠 ‘𝑈)𝑡) = (𝑌( ·𝑠 ‘𝑈)𝑡) ↔ 𝑋 = 𝑌)) |
39 | 34, 38 | mpbid 224 | . . . . 5 ⊢ (((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑋 = 𝑌) |
40 | 39 | rexlimdv3a 3214 | . . . 4 ⊢ ((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) → (∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈) → 𝑋 = 𝑌)) |
41 | 7, 40 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝐺‘𝑋) = (𝐺‘𝑌)) → 𝑋 = 𝑌) |
42 | 41 | ex 402 | . 2 ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
43 | fveq2 6411 | . 2 ⊢ (𝑋 = 𝑌 → (𝐺‘𝑋) = (𝐺‘𝑌)) | |
44 | 42, 43 | impbid1 217 | 1 ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 Scalarcsca 16270 ·𝑠 cvsca 16271 0gc0g 16415 LModclmod 19181 LVecclvec 19423 HLchlt 35371 LHypclh 36005 DVecHcdvh 37099 LCDualclcd 37607 HDMapchdma 37813 HGMapchg 37904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-riotaBAD 34974 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-undef 7637 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-0g 16417 df-mre 16561 df-mrc 16562 df-acs 16564 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-p1 17355 df-lat 17361 df-clat 17423 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-subg 17904 df-cntz 18062 df-oppg 18088 df-lsm 18364 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-dvr 18999 df-drng 19067 df-lmod 19183 df-lss 19251 df-lsp 19293 df-lvec 19424 df-lsatoms 34997 df-lshyp 34998 df-lcv 35040 df-lfl 35079 df-lkr 35107 df-ldual 35145 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-llines 35519 df-lplanes 35520 df-lvols 35521 df-lines 35522 df-psubsp 35524 df-pmap 35525 df-padd 35817 df-lhyp 36009 df-laut 36010 df-ldil 36125 df-ltrn 36126 df-trl 36180 df-tgrp 36764 df-tendo 36776 df-edring 36778 df-dveca 37024 df-disoa 37050 df-dvech 37100 df-dib 37160 df-dic 37194 df-dih 37250 df-doch 37369 df-djh 37416 df-lcdual 37608 df-mapd 37646 df-hvmap 37778 df-hdmap1 37814 df-hdmap 37815 df-hgmap 37905 |
This theorem is referenced by: hgmapf1oN 37924 hgmapeq0 37925 |
Copyright terms: Public domain | W3C validator |