Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn3 Structured version   Visualization version   GIF version

Theorem btwnconn3 33625
 Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))

Proof of Theorem btwnconn3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp3r 1199 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
3 simp2l 1196 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
4 btwndiff 33549 . . 3 ((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝))
51, 2, 3, 4syl3anc 1368 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑝 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝))
6 simprlr 779 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴𝑝)
76necomd 3069 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝑝𝐴)
8 simpl1 1188 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
9 simpl2l 1223 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpl2r 1224 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
11 simpr 488 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝑝 ∈ (𝔼‘𝑁))
12 simpl3r 1226 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
13 simprrl 780 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐵 Btwn ⟨𝐴, 𝐷⟩)
148, 10, 9, 12, 13btwncomand 33537 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐵 Btwn ⟨𝐷, 𝐴⟩)
15 simprll 778 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴 Btwn ⟨𝐷, 𝑝⟩)
168, 12, 10, 9, 11, 14, 15btwnexch3and 33543 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴 Btwn ⟨𝐵, 𝑝⟩)
178, 9, 10, 11, 16btwncomand 33537 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴 Btwn ⟨𝑝, 𝐵⟩)
18 simpl3l 1225 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
19 simprrr 781 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)
208, 18, 9, 12, 19btwncomand 33537 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐶 Btwn ⟨𝐷, 𝐴⟩)
218, 12, 18, 9, 11, 20, 15btwnexch3and 33543 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴 Btwn ⟨𝐶, 𝑝⟩)
228, 9, 18, 11, 21btwncomand 33537 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → 𝐴 Btwn ⟨𝑝, 𝐶⟩)
237, 17, 223jca 1125 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) ∧ ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩))) → (𝑝𝐴𝐴 Btwn ⟨𝑝, 𝐵⟩ ∧ 𝐴 Btwn ⟨𝑝, 𝐶⟩))
2423ex 416 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩)) → (𝑝𝐴𝐴 Btwn ⟨𝑝, 𝐵⟩ ∧ 𝐴 Btwn ⟨𝑝, 𝐶⟩)))
25 btwnconn2 33624 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑝𝐴𝐴 Btwn ⟨𝑝, 𝐵⟩ ∧ 𝐴 Btwn ⟨𝑝, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
268, 11, 9, 10, 18, 25syl122anc 1376 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → ((𝑝𝐴𝐴 Btwn ⟨𝑝, 𝐵⟩ ∧ 𝐴 Btwn ⟨𝑝, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
2724, 26syld 47 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → (((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) ∧ (𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
2827expd 419 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑝 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) → ((𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
2928rexlimdva 3276 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑝 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝐷, 𝑝⟩ ∧ 𝐴𝑝) → ((𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
305, 29mpd 15 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐷⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134  ⟨cop 4556   class class class wbr 5052  ‘cfv 6343  ℕcn 11634  𝔼cee 26689   Btwn cbtwn 26690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ee 26692  df-btwn 26693  df-cgr 26694  df-ofs 33505  df-colinear 33561  df-ifs 33562  df-cgr3 33563  df-fs 33564 This theorem is referenced by:  midofsegid  33626  outsideoftr  33651  lineelsb2  33670
 Copyright terms: Public domain W3C validator