| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsxmslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for prdsms 24439. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdsxms.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| prdsxms.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| prdsxms.d | ⊢ 𝐷 = (dist‘𝑌) |
| prdsxms.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsxms.r | ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) |
| Ref | Expression |
|---|---|
| prdsxmslem1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
| 3 | eqid 2730 | . . 3 ⊢ (Base‘(𝑅‘𝑘)) = (Base‘(𝑅‘𝑘)) | |
| 4 | eqid 2730 | . . 3 ⊢ ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) = ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) | |
| 5 | eqid 2730 | . . 3 ⊢ (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
| 6 | prdsxms.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 7 | prdsxms.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 8 | prdsxms.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) | |
| 9 | 8 | ffvelcdmda 7012 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ ∞MetSp) |
| 10 | 3, 4 | xmsxmet 24364 | . . . 4 ⊢ ((𝑅‘𝑘) ∈ ∞MetSp → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑅‘𝑘)))) |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑅‘𝑘)))) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 9, 11 | prdsxmet 24277 | . 2 ⊢ (𝜑 → (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
| 13 | prdsxms.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 14 | prdsxms.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 15 | 8 | feqmptd 6885 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
| 16 | 15 | oveq2d 7357 | . . . . 5 ⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
| 17 | 14, 16 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
| 18 | 17 | fveq2d 6821 | . . 3 ⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 19 | 13, 18 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 20 | prdsxms.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 21 | 17 | fveq2d 6821 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 22 | 20, 21 | eqtrid 2777 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 23 | 22 | fveq2d 6821 | . 2 ⊢ (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
| 24 | 12, 19, 23 | 3eltr4d 2844 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ↦ cmpt 5170 × cxp 5612 ↾ cres 5616 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 Basecbs 17112 distcds 17162 Xscprds 17341 ∞Metcxmet 21269 ∞MetSpcxms 24225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-icc 13244 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-hom 17177 df-cco 17178 df-topgen 17339 df-prds 17343 df-psmet 21276 df-xmet 21277 df-bl 21279 df-mopn 21280 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-xms 24228 |
| This theorem is referenced by: prdsxmslem2 24437 prdsxms 24438 |
| Copyright terms: Public domain | W3C validator |