MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem1 Structured version   Visualization version   GIF version

Theorem prdsxmslem1 24557
Description: Lemma for prdsms 24560. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
Assertion
Ref Expression
prdsxmslem1 (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem prdsxmslem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
2 eqid 2735 . . 3 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
3 eqid 2735 . . 3 (Base‘(𝑅𝑘)) = (Base‘(𝑅𝑘))
4 eqid 2735 . . 3 ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) = ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘))))
5 eqid 2735 . . 3 (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
6 prdsxms.s . . 3 (𝜑𝑆𝑊)
7 prdsxms.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsxms.r . . . 4 (𝜑𝑅:𝐼⟶∞MetSp)
98ffvelcdmda 7104 . . 3 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
103, 4xmsxmet 24482 . . . 4 ((𝑅𝑘) ∈ ∞MetSp → ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑅𝑘))))
119, 10syl 17 . . 3 ((𝜑𝑘𝐼) → ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑅𝑘))))
121, 2, 3, 4, 5, 6, 7, 9, 11prdsxmet 24395 . 2 (𝜑 → (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))))
13 prdsxms.d . . 3 𝐷 = (dist‘𝑌)
14 prdsxms.y . . . . 5 𝑌 = (𝑆Xs𝑅)
158feqmptd 6977 . . . . . 6 (𝜑𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
1615oveq2d 7447 . . . . 5 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
1714, 16eqtrid 2787 . . . 4 (𝜑𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
1817fveq2d 6911 . . 3 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
1913, 18eqtrid 2787 . 2 (𝜑𝐷 = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
20 prdsxms.b . . . 4 𝐵 = (Base‘𝑌)
2117fveq2d 6911 . . . 4 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
2220, 21eqtrid 2787 . . 3 (𝜑𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
2322fveq2d 6911 . 2 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))))
2412, 19, 233eltr4d 2854 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cmpt 5231   × cxp 5687  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  distcds 17307  Xscprds 17492  ∞Metcxmet 21367  ∞MetSpcxms 24343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-topgen 17490  df-prds 17494  df-psmet 21374  df-xmet 21375  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-xms 24346
This theorem is referenced by:  prdsxmslem2  24558  prdsxms  24559
  Copyright terms: Public domain W3C validator