![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsxmslem1 | Structured version Visualization version GIF version |
Description: Lemma for prdsms 24458. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsxms.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
prdsxms.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
prdsxms.d | ⊢ 𝐷 = (dist‘𝑌) |
prdsxms.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsxms.r | ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) |
Ref | Expression |
---|---|
prdsxmslem1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) | |
2 | eqid 2727 | . . 3 ⊢ (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
3 | eqid 2727 | . . 3 ⊢ (Base‘(𝑅‘𝑘)) = (Base‘(𝑅‘𝑘)) | |
4 | eqid 2727 | . . 3 ⊢ ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) = ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) | |
5 | eqid 2727 | . . 3 ⊢ (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
6 | prdsxms.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
7 | prdsxms.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
8 | prdsxms.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) | |
9 | 8 | ffvelcdmda 7097 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ ∞MetSp) |
10 | 3, 4 | xmsxmet 24380 | . . . 4 ⊢ ((𝑅‘𝑘) ∈ ∞MetSp → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑅‘𝑘)))) |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑅‘𝑘)))) |
12 | 1, 2, 3, 4, 5, 6, 7, 9, 11 | prdsxmet 24293 | . 2 ⊢ (𝜑 → (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) ∈ (∞Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
13 | prdsxms.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
14 | prdsxms.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
15 | 8 | feqmptd 6970 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
16 | 15 | oveq2d 7440 | . . . . 5 ⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
17 | 14, 16 | eqtrid 2779 | . . . 4 ⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
18 | 17 | fveq2d 6904 | . . 3 ⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
19 | 13, 18 | eqtrid 2779 | . 2 ⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
20 | prdsxms.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
21 | 17 | fveq2d 6904 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
22 | 20, 21 | eqtrid 2779 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
23 | 22 | fveq2d 6904 | . 2 ⊢ (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
24 | 12, 19, 23 | 3eltr4d 2843 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5233 × cxp 5678 ↾ cres 5682 ⟶wf 6547 ‘cfv 6551 (class class class)co 7424 Fincfn 8968 Basecbs 17185 distcds 17247 Xscprds 17432 ∞Metcxmet 21269 ∞MetSpcxms 24241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-icc 13369 df-fz 13523 df-struct 17121 df-slot 17156 df-ndx 17168 df-base 17186 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-hom 17262 df-cco 17263 df-topgen 17430 df-prds 17434 df-psmet 21276 df-xmet 21277 df-bl 21279 df-mopn 21280 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-xms 24244 |
This theorem is referenced by: prdsxmslem2 24456 prdsxms 24457 |
Copyright terms: Public domain | W3C validator |