Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xrcl Structured version   Visualization version   GIF version

Theorem sge0xrcl 45400
Description: The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0xrcl.x (𝜑𝑋𝑉)
sge0xrcl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0xrcl (𝜑 → (Σ^𝐹) ∈ ℝ*)

Proof of Theorem sge0xrcl
StepHypRef Expression
1 iccssxr 13412 . 2 (0[,]+∞) ⊆ ℝ*
2 sge0xrcl.x . . 3 (𝜑𝑋𝑉)
3 sge0xrcl.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
42, 3sge0cl 45396 . 2 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
51, 4sselid 3980 1 (𝜑 → (Σ^𝐹) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wf 6539  cfv 6543  (class class class)co 7412  0cc0 11113  +∞cpnf 11250  *cxr 11252  [,]cicc 13332  Σ^csumge0 45377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-sumge0 45378
This theorem is referenced by:  sge0repnf  45401  sge0fsum  45402  sge0sup  45406  sge0less  45407  sge0gerp  45410  sge0pnffigt  45411  sge0ssre  45412  sge0lefi  45413  sge0le  45422  sge0split  45424  sge0ss  45427  sge0iunmptlemre  45430  sge0iunmpt  45433  sge0rpcpnf  45436  sge0isum  45442  sge0xadd  45450  sge0seq  45461  ismeannd  45482  omeunle  45531  omeiunle  45532  omeiunltfirp  45534  caratheodorylem2  45542  isomenndlem  45545  hoicvrrex  45571  ovnlecvr  45573  ovnsubadd  45587  sge0hsphoire  45604  hoidmv1lelem2  45607  hoidmv1lelem3  45608  hoidmvlelem1  45610  hoidmvlelem5  45614  ovolval5lem2  45668
  Copyright terms: Public domain W3C validator