ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 104 wff  ( ph  /\  ps )
wb 105 wff  ( ph  <->  ps )
ax-ia1 106 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 107 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 108 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 117 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 615 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 616 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 709 wff  ( ph  \/  ps )
ax-io 710 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 831 wff STAB  ph
df-stab 832 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 835 wff DECID  ph
df-dc 836 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
w3o 979 wff  ( ph  \/  ps  \/  ch )
w3a 980 wff  ( ph  /\  ps  /\ 
ch )
df-3or 981 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 982 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1362 wff  A. x ph
cv 1363 class  x
wceq 1364 wff 
A  =  B
wtru 1365 wff T.
df-tru 1367 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1369 wff F.
df-fal 1370 |-  ( F.  <->  -. T.  )
wxo 1386 wff  ( ph  \/_  ps )
df-xor 1387 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1461 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1462 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1463 |- 
ph   =>    |- 
A. x ph
wnf 1474 wff 
F/ x ph
df-nf 1475 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1506 wff 
E. x ph
ax-ie1 1507 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1508 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1518 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1519 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1520 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1521 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1523 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1524 |-  ( A. x ph  ->  ph )
ax-17 1540 |-  ( ph  ->  A. x ph )
ax-i9 1544 |-  E. x  x  =  y
ax-ial 1548 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1549 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1730 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1776 wff 
[ y  /  x ] ph
df-sb 1777 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1828 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1837 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2045 wff 
E! x ph
wmo 2046 wff 
E* x ph
df-eu 2048 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2049 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2167 wff 
A  e.  B
ax-13 2169 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2170 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2178 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2182 class  { x  |  ph }
df-clab 2183 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2189 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2192 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2326 wff  F/_ x A
df-nfc 2328 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2367 wff 
A  =/=  B
df-ne 2368 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2462 wff 
A  e/  B
df-nel 2463 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2475 wff  A. x  e.  A  ph
wrex 2476 wff 
E. x  e.  A  ph
wreu 2477 wff 
E! x  e.  A  ph
wrmo 2478 wff 
E* x  e.  A  ph
crab 2479 class  { x  e.  A  |  ph }
df-ral 2480 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2481 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2482 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2483 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2484 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2763 class  _V
df-v 2765 |-  _V  =  { x  |  x  =  x }
wcdeq 2972 wff CondEq ( x  =  y  ->  ph )
df-cdeq 2973 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 2989 wff  [. A  /  x ]. ph
df-sbc 2990 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3084 class  [_ A  /  x ]_ B
df-csb 3085 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3154 class  ( A  \  B )
cun 3155 class  ( A  u.  B )
cin 3156 class  ( A  i^i  B )
wss 3157 wff 
A  C_  B
df-dif 3159 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3161 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3163 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3170 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3450 class  (/)
df-nul 3451 |-  (/)  =  ( _V  \  _V )
cif 3561 class  if ( ph ,  A ,  B )
df-if 3562 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3605 class  ~P A
df-pw 3607 |-  ~P A  =  {
x  |  x  C_  A }
csn 3622 class  { A }
cpr 3623 class  { A ,  B }
ctp 3624 class  { A ,  B ,  C }
cop 3625 class  <. A ,  B >.
cotp 3626 class  <. A ,  B ,  C >.
df-sn 3628 |-  { A }  =  {
x  |  x  =  A }
df-pr 3629 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3630 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3631 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3632 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3839 class  U. A
df-uni 3840 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3874 class  |^| A
df-int 3875 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3916 class  U_ x  e.  A  B
ciin 3917 class  |^|_
x  e.  A  B
df-iun 3918 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3919 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4010 wff Disj  x  e.  A  B
df-disj 4011 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4033 wff 
A R B
df-br 4034 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4093 class  {
<. x ,  y >.  |  ph }
cmpt 4094 class  ( x  e.  A  |->  B )
df-opab 4095 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4096 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4131 wff 
Tr  A
df-tr 4132 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4148 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4151 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4159 |- 
E. x A. y  -.  y  e.  x
ax-pow 4207 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4227 wff EXMID
df-exmid 4228 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4242 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4322 class  _E
cid 4323 class  _I
df-eprel 4324 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4328 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4329 wff 
R  Po  A
wor 4330 wff 
R  Or  A
df-po 4331 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4332 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4362 wff FrFor  R A S
wfr 4363 wff 
R  Fr  A
wse 4364 wff 
R Se  A
wwe 4365 wff 
R  We  A
df-frfor 4366 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4367 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4368 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4369 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4397 wff 
Ord  A
con0 4398 class  On
wlim 4399 wff 
Lim  A
csuc 4400 class  suc 
A
df-iord 4401 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4403 |-  On  =  { x  |  Ord  x }
df-ilim 4404 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4406 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4468 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4573 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4624 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4626 class  om
df-iom 4627 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4661 class  ( A  X.  B )
ccnv 4662 class  `' A
cdm 4663 class  dom 
A
crn 4664 class  ran 
A
cres 4665 class  ( A  |`  B )
cima 4666 class  ( A " B )
ccom 4667 class  ( A  o.  B )
wrel 4668 wff 
Rel  A
df-xp 4669 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4670 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4671 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4672 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4673 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4674 |-  ran  A  =  dom  `' A
df-res 4675 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4676 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5217 class  ( iota x ph )
df-iota 5219 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5252 wff 
Fun  A
wfn 5253 wff 
A  Fn  B
wf 5254 wff 
F : A --> B
wf1 5255 wff 
F : A -1-1-> B
wfo 5256 wff 
F : A -onto-> B
wf1o 5257 wff 
F : A -1-1-onto-> B
cfv 5258 class  ( F `  A )
wiso 5259 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5260 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5261 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5262 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5263 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5264 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5265 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5266 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5267 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5876 class  (
iota_ x  e.  A  ph )
df-riota 5877 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5922 class  ( A F B )
coprab 5923 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5924 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5925 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5926 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5927 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6133 class  oF R
cofr 6134 class  oR R
df-of 6135 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6136 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6196 class  1st
c2nd 6197 class  2nd
df-1st 6198 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6199 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6302 class tpos  F
df-tpos 6303 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6343 wff 
Smo  A
df-smo 6344 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6362 class recs ( F )
df-recs 6363 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6427 class  rec ( F ,  I
)
df-irdg 6428 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6448 class frec ( F ,  I )
df-frec 6449 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6467 class  1o
c2o 6468 class  2o
c3o 6469 class  3o
c4o 6470 class  4o
coa 6471 class  +o
comu 6472 class  .o
coei 6473 classo
df-1o 6474 |-  1o  =  suc  (/)
df-2o 6475 |-  2o  =  suc  1o
df-3o 6476 |-  3o  =  suc  2o
df-4o 6477 |-  4o  =  suc  3o
df-oadd 6478 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6479 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6480 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6589 wff 
R  Er  A
cec 6590 class  [ A ] R
cqs 6591 class  ( A /. R )
df-er 6592 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6594 |-  [ A ] R  =  ( R " { A } )
df-qs 6598 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6707 class  ^m
cpm 6708 class  ^pm
df-map 6709 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6710 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6757 class  X_ x  e.  A  B
df-ixp 6758 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6797 class  ~~
cdom 6798 class  ~<_
cfn 6799 class  Fin
df-en 6800 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6801 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6802 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 7034 class  fi
df-fi 7035 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 7048 class  sup ( A ,  B ,  R )
cinf 7049 class inf ( A ,  B ,  R )
df-sup 7050 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 7051 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 7103 class  ( A B )
df-dju 7104 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7111 class inl
cinr 7112 class inr
df-inl 7113 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7114 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7149 class case ( R ,  S )
df-case 7150 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7168 class  ( R ⊔d  S )
df-djud 7169 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7185 class
df-nninf 7186 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7200 class Omni
df-omni 7201 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7217 class Markov
df-markov 7218 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7229 class WOmni
df-womni 7230 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7246 class  card
df-card 7247 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
wac 7272 wff CHOICE
df-ac 7273 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wap 7314 wff 
R Ap  A
df-pap 7315 |-  ( R Ap  A  <->  ( ( R  C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  y R z ) ) ) ) )
wtap 7316 wff 
R TAp  A
df-tap 7317 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) ) )
wacc 7329 wff CCHOICE
df-cc 7330 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7339 class  N.
cpli 7340 class  +N
cmi 7341 class  .N
clti 7342 class  <N
cplpq 7343 class  +pQ
cmpq 7344 class  .pQ
cltpq 7345 class  <pQ
ceq 7346 class  ~Q
cnq 7347 class  Q.
c1q 7348 class  1Q
cplq 7349 class  +Q
cmq 7350 class  .Q
crq 7351 class  *Q
cltq 7352 class  <Q
ceq0 7353 class ~Q0
cnq0 7354 class Q0
c0q0 7355 class 0Q0
cplq0 7356 class +Q0
cmq0 7357 class ·Q0
cnp 7358 class  P.
c1p 7359 class  1P
cpp 7360 class  +P.
cmp 7361 class  .P.
cltp 7362 class  <P
cer 7363 class  ~R
cnr 7364 class  R.
c0r 7365 class  0R
c1r 7366 class  1R
cm1r 7367 class  -1R
cplr 7368 class  +R
cmr 7369 class  .R
cltr 7370 class  <R
df-ni 7371 |-  N.  =  ( om  \  { (/) } )
df-pli 7372 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7373 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7374 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7411 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7412 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7413 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7414 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7415 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7416 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7417 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7418 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7419 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7420 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7491 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7492 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7493 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7494 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7495 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7533 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7534 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7535 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7536 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7537 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7793 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7794 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7795 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7796 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7797 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7798 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7799 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7800 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7877 class  CC
cr 7878 class  RR
cc0 7879 class  0
c1 7880 class  1
ci 7881 class  _i
caddc 7882 class  +
cltrr 7883 class  <RR
cmul 7884 class  x.
df-c 7885 |-  CC  =  ( R.  X.  R. )
df-0 7886 |-  0  =  <. 0R ,  0R >.
df-1 7887 |-  1  =  <. 1R ,  0R >.
df-i 7888 |-  _i  =  <. 0R ,  1R >.
df-r 7889 |-  RR  =  ( R.  X.  { 0R } )
df-add 7890 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7891 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 7892 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 7970 |-  CC  e.  _V
ax-resscn 7971 |-  RR  C_  CC
ax-1cn 7972 |-  1  e.  CC
ax-1re 7973 |-  1  e.  RR
ax-icn 7974 |-  _i  e.  CC
ax-addcl 7975 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 7976 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 7977 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 7978 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 7979 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 7980 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 7981 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 7982 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 7983 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 7984 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 7985 |-  0  <RR  1
ax-1rid 7986 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 7987 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 7988 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 7989 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 7990 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 7991 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 7992 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 7993 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 7994 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 7995 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 7996 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 7997 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 7998 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 7999 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 8000 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 8001 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 8002 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 8058 class +oo
cmnf 8059 class -oo
cxr 8060 class  RR*
clt 8061 class  <
cle 8062 class  <_
df-pnf 8063 |- +oo  =  ~P U. CC
df-mnf 8064 |- -oo  =  ~P +oo
df-xr 8065 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 8066 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 8067 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8197 class  -
cneg 8198 class  -u A
df-sub 8199 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8200 |-  -u A  =  (
0  -  A )
creap 8601 class #
df-reap 8602 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8608 class #
df-ap 8609 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8699 class  /
df-div 8700 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 8990 class  NN
df-inn 8991 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 9041 class  2
c3 9042 class  3
c4 9043 class  4
c5 9044 class  5
c6 9045 class  6
c7 9046 class  7
c8 9047 class  8
c9 9048 class  9
df-2 9049 |-  2  =  ( 1  +  1 )
df-3 9050 |-  3  =  ( 2  +  1 )
df-4 9051 |-  4  =  ( 3  +  1 )
df-5 9052 |-  5  =  ( 4  +  1 )
df-6 9053 |-  6  =  ( 5  +  1 )
df-7 9054 |-  7  =  ( 6  +  1 )
df-8 9055 |-  8  =  ( 7  +  1 )
df-9 9056 |-  9  =  ( 8  +  1 )
cn0 9249 class  NN0
df-n0 9250 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9312 class NN0*
df-xnn0 9313 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9326 class  ZZ
df-z 9327 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9457 class ; A B
df-dec 9458 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9601 class  ZZ>=
df-uz 9602 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9693 class  QQ
df-q 9694 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9728 class  RR+
df-rp 9729 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9844 class  -e A
cxad 9845 class  +e
cxmu 9846 class  xe
df-xneg 9847 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9848 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9849 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 9963 class  (,)
cioc 9964 class  (,]
cico 9965 class  [,)
cicc 9966 class  [,]
df-ioo 9967 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 9968 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 9969 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 9970 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 10083 class  ...
df-fz 10084 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10217 class ..^
df-fzo 10218 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10358 class  |_
cceil 10359 class
df-fl 10360 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10361 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10414 class  mod
df-mod 10415 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10539 class  seq M (  .+  ,  F )
df-seqfrec 10540 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10630 class  ^
df-exp 10631 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10817 class  !
df-fac 10818 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10839 class  _C
df-bc 10840 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10867 class
df-ihash 10868 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cword 10935 class Word  S
df-word 10936 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
cshi 10979 class  shift
df-shft 10980 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 11004 class  *
cre 11005 class  Re
cim 11006 class  Im
df-cj 11007 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 11008 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 11009 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 11161 class  sqr
cabs 11162 class  abs
df-rsqrt 11163 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 11164 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11443 class  ~~>
df-clim 11444 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11518 class  sum_ k  e.  A  B
df-sumdc 11519 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 11715 class  prod_
k  e.  A  B
df-proddc 11716 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 11807 class  exp
ceu 11808 class  _e
csin 11809 class  sin
ccos 11810 class  cos
ctan 11811 class  tan
cpi 11812 class  pi
df-ef 11813 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 11814 |-  _e  =  ( exp `  1 )
df-sin 11815 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 11816 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 11817 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 11818 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 11940 class  tau
df-tau 11941 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 11952 class  ||
df-dvds 11953 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cbits 12105 class bits
df-bits 12106 |- bits 
=  ( n  e.  ZZ  |->  { m  e. 
NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) } )
cgcd 12120 class  gcd
df-gcd 12121 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 12228 class lcm
df-lcm 12229 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12275 class  Prime
df-prm 12276 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12349 class numer
cdenom 12350 class denom
df-numer 12351 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12352 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12376 class  odZ
cphi 12377 class  phi
df-odz 12378 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12379 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12453 class  pCnt
df-pc 12454 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12538 class  ZZ[_i]
df-gz 12539 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 12674 class Struct
cnx 12675 class  ndx
csts 12676 class sSet
cslot 12677 class Slot  A
cbs 12678 class  Base
cress 12679 classs
df-struct 12680 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 12681 |- 
ndx  =  (  _I  |`  NN )
df-slot 12682 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 12684 |- 
Base  = Slot  1
df-sets 12685 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-iress 12686 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) ) >.
) )
cplusg 12755 class  +g
cmulr 12756 class  .r
cstv 12757 class  *r
csca 12758 class Scalar
cvsca 12759 class  .s
cip 12760 class  .i
cts 12761 class TopSet
cple 12762 class  le
coc 12763 class  oc
cds 12764 class  dist
cunif 12765 class  UnifSet
chom 12766 class  Hom
cco 12767 class comp
df-plusg 12768 |- 
+g  = Slot  2
df-mulr 12769 |- 
.r  = Slot  3
df-starv 12770 |-  *r  = Slot  4
df-sca 12771 |- Scalar  = Slot  5
df-vsca 12772 |-  .s  = Slot  6
df-ip 12773 |-  .i  = Slot  8
df-tset 12774 |- TopSet  = Slot  9
df-ple 12775 |- 
le  = Slot ; 1 0
df-ocomp 12776 |-  oc  = Slot ; 1 1
df-ds 12777 |-  dist 
= Slot ; 1 2
df-unif 12778 |- 
UnifSet  = Slot ; 1 3
df-hom 12779 |- 
Hom  = Slot ; 1 4
df-cco 12780 |- comp 
= Slot ; 1 5
crest 12910 classt
ctopn 12911 class  TopOpen
df-rest 12912 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 12913 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 12925 class  topGen
cpt 12926 class  Xt_
c0g 12927 class  0g
cgsu 12928 class  gsumg
df-0g 12929 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-igsum 12930 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
df-topgen 12931 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 12932 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 12936 class  X_s
cpws 12937 class  ^s
df-prds 12938 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 12941 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cimas 12942 class  "s
cqus 12943 class  /.s
cxps 12944 class  X.s
df-iimas 12945 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
df-qus 12946 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 12947 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
cplusf 12996 class  +f
cmgm 12997 class Mgm
df-plusf 12998 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 12999 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 13044 class Smgrp
df-sgrp 13045 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 13057 class  Mnd
df-mnd 13058 |- 
Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. x  e.  b 
( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 13089 class MndHom
csubmnd 13090 class SubMnd
df-mhm 13091 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 13092 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cgrp 13132 class  Grp
cminusg 13133 class  invg
csg 13134 class  -g
df-grp 13135 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 13136 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 13137 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 13249 class .g
df-mulg 13250 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 13297 class SubGrp
cnsg 13298 class NrmSGrp
cqg 13299 class ~QG
df-subg 13300 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 13301 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 13302 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 13370 class  GrpHom
df-ghm 13371 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
ccmn 13414 class CMnd
cabl 13415 class  Abel
df-cmn 13416 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 13417 |- 
Abel  =  ( Grp  i^i CMnd
)
cmgp 13476 class mulGrp
df-mgp 13477 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
crng 13488 class Rng
df-rng 13489 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  / 
b ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
cur 13515 class  1r
df-ur 13516 |-  1r  =  ( 0g  o. mulGrp )
csrg 13519 class SRing
df-srg 13520 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 13552 class  Ring
ccrg 13553 class  CRing
df-ring 13554 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 13555 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 13623 class oppr
df-oppr 13624 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 13642 class  ||r
cui 13643 class Unit
cir 13644 class Irred
df-dvdsr 13645 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 13646 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 13647 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 13676 class  invr
df-invr 13677 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 13687 class /r
df-dvr 13688 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 13706 class RingHom
crs 13707 class RingIso
df-rhm 13708 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rim 13709 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
cnzr 13735 class NzRing
df-nzr 13736 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
clring 13746 class LRing
df-lring 13747 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
csubrng 13753 class SubRng
df-subrng 13754 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng } )
csubrg 13773 class SubRing
crgspn 13774 class RingSpan
df-subrg 13775 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 13776 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
crlreg 13811 class RLReg
cdomn 13812 class Domn
cidom 13813 class IDomn
df-rlreg 13814 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 13815 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 13816 |- IDomn  =  ( CRing  i^i Domn )
capr 13836 class #r
df-apr 13837 |- #r  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
) } )
clmod 13843 class  LMod
cscaf 13844 class  .sf
df-lmod 13845 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 13846 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 13908 class  LSubSp
df-lssm 13909 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
clspn 13942 class  LSpan
df-lsp 13943 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
csra 13989 class subringAlg
crglmod 13990 class ringLMod
df-sra 13991 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 13992 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
clidl 14023 class LIdeal
crsp 14024 class RSpan
df-lidl 14025 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 14026 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 14055 class 2Ideal
df-2idl 14056 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
cpsmet 14091 class PsMet
cxmet 14092 class  *Met
cmet 14093 class  Met
cbl 14094 class  ball
cfbas 14095 class  fBas
cfg 14096 class  filGen
cmopn 14097 class  MetOpen
cmetu 14098 class metUnif
df-psmet 14099 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 14100 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 14101 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 14102 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 14103 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 14104 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 14105 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 14106 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 14112 classfld
df-cnfld 14113 |-fld  =  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
czring 14146 classring
df-zring 14147 |-ring  =  (flds  ZZ )
czrh 14167 class  ZRHom
czlm 14168 class  ZMod
czn 14169 class ℤ/n
df-zrh 14170 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 14171 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-zn 14172 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
cmps 14217 class mPwSer
df-psr 14218 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
ctop 14233 class  Top
df-top 14234 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 14246 class TopOn
df-topon 14247 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 14266 class  TopSp
df-topsp 14267 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 14278 class  TopBases
df-bases 14279 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 14328 class  Clsd
cnt 14329 class  int
ccl 14330 class  cls
df-cld 14331 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 14332 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 14333 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 14374 class  nei
df-nei 14375 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 14421 class  Cn
ccnp 14422 class  CnP
clm 14423 class  ~~> t
df-cn 14424 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 14425 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 14426 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 14488 class  tX
df-tx 14489 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 14536 class  Homeo
df-hmeo 14537 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 14572 class  *MetSp
cms 14573 class  MetSp
ctms 14574 class toMetSp
df-xms 14575 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 14576 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 14577 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 14806 class  -cn->
df-cncf 14807 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 14890 class lim CC
cdv 14891 class  _D
df-limced 14892 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 14893 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
cply 14964 class Poly
cidp 14965 class  Xp
df-ply 14966 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 14967 |-  Xp  =  (  _I  |`  CC )
clog 15092 class  log
ccxp 15093 class  ^c
df-relog 15094 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 15095 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 15179 class logb
df-logb 15180 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
csgm 15217 class  sigma
df-sgm 15218 |- 
sigma  =  ( x  e.  CC ,  n  e.  NN  |->  sum_ k  e.  {
p  e.  NN  |  p  ||  n }  (
k  ^c  x ) )
clgs 15238 class  /L
df-lgs 15239 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 15439 wff 
A DECIDin  B
df-dcin 15440 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 15458 wff BOUNDED  ph
ax-bd0 15459 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 15460 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 15461 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 15462 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 15463 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 15464 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 15465 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 15466 |- BOUNDED  x  =  y
ax-bdel 15467 |- BOUNDED  x  e.  y
ax-bdsb 15468 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 15486 wff BOUNDED  A
df-bdc 15487 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 15530 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 15570 |- BOUNDED  ph   =>    |- DECID  ph
wind 15572 wff Ind  A
df-bj-ind 15573 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 15587 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 15614 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 15622 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 15628 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 15633 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 15635 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 15720 wff  A.! x ( ph  ->  ps )
walsc 15721 wff  A.! x  e.  A ph
df-alsi 15722 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 15723 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator