ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 104 wff  ( ph  /\  ps )
wb 105 wff  ( ph  <->  ps )
ax-ia1 106 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 107 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 108 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 117 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 617 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 618 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 713 wff  ( ph  \/  ps )
ax-io 714 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 835 wff STAB  ph
df-stab 836 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 839 wff DECID  ph
df-dc 840 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
wif 983 wff if-
( ph ,  ps ,  ch )
df-ifp 984 |-  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) ) )
w3o 1001 wff  ( ph  \/  ps  \/  ch )
w3a 1002 wff  ( ph  /\  ps  /\ 
ch )
df-3or 1003 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 1004 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1393 wff  A. x ph
cv 1394 class  x
wceq 1395 wff 
A  =  B
wtru 1396 wff T.
df-tru 1398 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1400 wff F.
df-fal 1401 |-  ( F.  <->  -. T.  )
wxo 1417 wff  ( ph  \/_  ps )
df-xor 1418 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1493 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1494 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1495 |- 
ph   =>    |- 
A. x ph
wnf 1506 wff 
F/ x ph
df-nf 1507 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1538 wff 
E. x ph
ax-ie1 1539 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1540 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1550 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1551 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1552 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1553 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1555 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1556 |-  ( A. x ph  ->  ph )
ax-17 1572 |-  ( ph  ->  A. x ph )
ax-i9 1576 |-  E. x  x  =  y
ax-ial 1580 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1581 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1762 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1808 wff 
[ y  /  x ] ph
df-sb 1809 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1860 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1869 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2077 wff 
E! x ph
wmo 2078 wff 
E* x ph
df-eu 2080 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2081 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2200 wff 
A  e.  B
ax-13 2202 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2203 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2211 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2215 class  { x  |  ph }
df-clab 2216 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2222 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2225 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2359 wff  F/_ x A
df-nfc 2361 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2400 wff 
A  =/=  B
df-ne 2401 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2495 wff 
A  e/  B
df-nel 2496 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2508 wff  A. x  e.  A  ph
wrex 2509 wff 
E. x  e.  A  ph
wreu 2510 wff 
E! x  e.  A  ph
wrmo 2511 wff 
E* x  e.  A  ph
crab 2512 class  { x  e.  A  |  ph }
df-ral 2513 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2514 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2515 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2516 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2517 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2799 class  _V
df-v 2801 |-  _V  =  { x  |  x  =  x }
wcdeq 3011 wff CondEq ( x  =  y  ->  ph )
df-cdeq 3012 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 3028 wff  [. A  /  x ]. ph
df-sbc 3029 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3124 class  [_ A  /  x ]_ B
df-csb 3125 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3194 class  ( A  \  B )
cun 3195 class  ( A  u.  B )
cin 3196 class  ( A  i^i  B )
wss 3197 wff 
A  C_  B
df-dif 3199 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3201 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3203 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3210 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3491 class  (/)
df-nul 3492 |-  (/)  =  ( _V  \  _V )
cif 3602 class  if ( ph ,  A ,  B )
df-if 3603 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3649 class  ~P A
df-pw 3651 |-  ~P A  =  {
x  |  x  C_  A }
csn 3666 class  { A }
cpr 3667 class  { A ,  B }
ctp 3668 class  { A ,  B ,  C }
cop 3669 class  <. A ,  B >.
cotp 3670 class  <. A ,  B ,  C >.
df-sn 3672 |-  { A }  =  {
x  |  x  =  A }
df-pr 3673 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3674 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3675 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3676 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3888 class  U. A
df-uni 3889 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3923 class  |^| A
df-int 3924 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3965 class  U_ x  e.  A  B
ciin 3966 class  |^|_
x  e.  A  B
df-iun 3967 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3968 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4059 wff Disj  x  e.  A  B
df-disj 4060 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4083 wff 
A R B
df-br 4084 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4144 class  {
<. x ,  y >.  |  ph }
cmpt 4145 class  ( x  e.  A  |->  B )
df-opab 4146 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4147 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4182 wff 
Tr  A
df-tr 4183 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4199 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4202 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4210 |- 
E. x A. y  -.  y  e.  x
ax-pow 4258 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4278 wff EXMID
df-exmid 4279 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4293 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4378 class  _E
cid 4379 class  _I
df-eprel 4380 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4384 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4385 wff 
R  Po  A
wor 4386 wff 
R  Or  A
df-po 4387 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4388 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4418 wff FrFor  R A S
wfr 4419 wff 
R  Fr  A
wse 4420 wff 
R Se  A
wwe 4421 wff 
R  We  A
df-frfor 4422 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4423 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4424 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4425 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4453 wff 
Ord  A
con0 4454 class  On
wlim 4455 wff 
Lim  A
csuc 4456 class  suc 
A
df-iord 4457 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4459 |-  On  =  { x  |  Ord  x }
df-ilim 4460 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4462 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4524 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4629 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4680 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4682 class  om
df-iom 4683 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4717 class  ( A  X.  B )
ccnv 4718 class  `' A
cdm 4719 class  dom 
A
crn 4720 class  ran 
A
cres 4721 class  ( A  |`  B )
cima 4722 class  ( A " B )
ccom 4723 class  ( A  o.  B )
wrel 4724 wff 
Rel  A
df-xp 4725 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4726 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4727 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4728 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4729 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4730 |-  ran  A  =  dom  `' A
df-res 4731 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4732 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5276 class  ( iota x ph )
df-iota 5278 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5312 wff 
Fun  A
wfn 5313 wff 
A  Fn  B
wf 5314 wff 
F : A --> B
wf1 5315 wff 
F : A -1-1-> B
wfo 5316 wff 
F : A -onto-> B
wf1o 5317 wff 
F : A -1-1-onto-> B
cfv 5318 class  ( F `  A )
wiso 5319 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5320 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5321 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5322 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5323 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5324 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5325 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5326 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5327 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5959 class  (
iota_ x  e.  A  ph )
df-riota 5960 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 6007 class  ( A F B )
coprab 6008 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 6009 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 6010 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 6011 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 6012 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6222 class  oF R
cofr 6223 class  oR R
df-of 6224 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6225 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6290 class  1st
c2nd 6291 class  2nd
df-1st 6292 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6293 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6396 class tpos  F
df-tpos 6397 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6437 wff 
Smo  A
df-smo 6438 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6456 class recs ( F )
df-recs 6457 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6521 class  rec ( F ,  I
)
df-irdg 6522 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6542 class frec ( F ,  I )
df-frec 6543 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6561 class  1o
c2o 6562 class  2o
c3o 6563 class  3o
c4o 6564 class  4o
coa 6565 class  +o
comu 6566 class  .o
coei 6567 classo
df-1o 6568 |-  1o  =  suc  (/)
df-2o 6569 |-  2o  =  suc  1o
df-3o 6570 |-  3o  =  suc  2o
df-4o 6571 |-  4o  =  suc  3o
df-oadd 6572 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6573 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6574 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6685 wff 
R  Er  A
cec 6686 class  [ A ] R
cqs 6687 class  ( A /. R )
df-er 6688 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6690 |-  [ A ] R  =  ( R " { A } )
df-qs 6694 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6803 class  ^m
cpm 6804 class  ^pm
df-map 6805 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6806 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6853 class  X_ x  e.  A  B
df-ixp 6854 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6893 class  ~~
cdom 6894 class  ~<_
cfn 6895 class  Fin
df-en 6896 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6897 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6898 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 7143 class  fi
df-fi 7144 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 7157 class  sup ( A ,  B ,  R )
cinf 7158 class inf ( A ,  B ,  R )
df-sup 7159 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 7160 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 7212 class  ( A B )
df-dju 7213 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7220 class inl
cinr 7221 class inr
df-inl 7222 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7223 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7258 class case ( R ,  S )
df-case 7259 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7277 class  ( R ⊔d  S )
df-djud 7278 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7294 class
df-nninf 7295 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7309 class Omni
df-omni 7310 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7326 class Markov
df-markov 7327 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7338 class WOmni
df-womni 7339 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7357 class  card
wacn 7358 class AC  A
df-card 7359 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
df-acnm 7360 |- AC  A  =  { x  |  ( A  e. 
_V  /\  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) }
wac 7395 wff CHOICE
df-ac 7396 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wap 7441 wff 
R Ap  A
df-pap 7442 |-  ( R Ap  A  <->  ( ( R  C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  y R z ) ) ) ) )
wtap 7443 wff 
R TAp  A
df-tap 7444 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) ) )
wacc 7456 wff CCHOICE
df-cc 7457 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7467 class  N.
cpli 7468 class  +N
cmi 7469 class  .N
clti 7470 class  <N
cplpq 7471 class  +pQ
cmpq 7472 class  .pQ
cltpq 7473 class  <pQ
ceq 7474 class  ~Q
cnq 7475 class  Q.
c1q 7476 class  1Q
cplq 7477 class  +Q
cmq 7478 class  .Q
crq 7479 class  *Q
cltq 7480 class  <Q
ceq0 7481 class ~Q0
cnq0 7482 class Q0
c0q0 7483 class 0Q0
cplq0 7484 class +Q0
cmq0 7485 class ·Q0
cnp 7486 class  P.
c1p 7487 class  1P
cpp 7488 class  +P.
cmp 7489 class  .P.
cltp 7490 class  <P
cer 7491 class  ~R
cnr 7492 class  R.
c0r 7493 class  0R
c1r 7494 class  1R
cm1r 7495 class  -1R
cplr 7496 class  +R
cmr 7497 class  .R
cltr 7498 class  <R
df-ni 7499 |-  N.  =  ( om  \  { (/) } )
df-pli 7500 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7501 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7502 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7539 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7540 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7541 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7542 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7543 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7544 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7545 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7546 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7547 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7548 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7619 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7620 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7621 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7622 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7623 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7661 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7662 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7663 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7664 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7665 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7921 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7922 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7923 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7924 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7925 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7926 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7927 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7928 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 8005 class  CC
cr 8006 class  RR
cc0 8007 class  0
c1 8008 class  1
ci 8009 class  _i
caddc 8010 class  +
cltrr 8011 class  <RR
cmul 8012 class  x.
df-c 8013 |-  CC  =  ( R.  X.  R. )
df-0 8014 |-  0  =  <. 0R ,  0R >.
df-1 8015 |-  1  =  <. 1R ,  0R >.
df-i 8016 |-  _i  =  <. 0R ,  1R >.
df-r 8017 |-  RR  =  ( R.  X.  { 0R } )
df-add 8018 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 8019 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 8020 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 8098 |-  CC  e.  _V
ax-resscn 8099 |-  RR  C_  CC
ax-1cn 8100 |-  1  e.  CC
ax-1re 8101 |-  1  e.  RR
ax-icn 8102 |-  _i  e.  CC
ax-addcl 8103 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 8104 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 8105 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 8106 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 8107 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 8108 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 8109 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 8110 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 8111 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 8112 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 8113 |-  0  <RR  1
ax-1rid 8114 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 8115 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 8116 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 8117 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 8118 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 8119 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 8120 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 8121 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 8122 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 8123 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 8124 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 8125 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 8126 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 8127 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 8128 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 8129 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 8130 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 8186 class +oo
cmnf 8187 class -oo
cxr 8188 class  RR*
clt 8189 class  <
cle 8190 class  <_
df-pnf 8191 |- +oo  =  ~P U. CC
df-mnf 8192 |- -oo  =  ~P +oo
df-xr 8193 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 8194 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 8195 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8325 class  -
cneg 8326 class  -u A
df-sub 8327 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8328 |-  -u A  =  (
0  -  A )
creap 8729 class #
df-reap 8730 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8736 class #
df-ap 8737 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8827 class  /
df-div 8828 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 9118 class  NN
df-inn 9119 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 9169 class  2
c3 9170 class  3
c4 9171 class  4
c5 9172 class  5
c6 9173 class  6
c7 9174 class  7
c8 9175 class  8
c9 9176 class  9
df-2 9177 |-  2  =  ( 1  +  1 )
df-3 9178 |-  3  =  ( 2  +  1 )
df-4 9179 |-  4  =  ( 3  +  1 )
df-5 9180 |-  5  =  ( 4  +  1 )
df-6 9181 |-  6  =  ( 5  +  1 )
df-7 9182 |-  7  =  ( 6  +  1 )
df-8 9183 |-  8  =  ( 7  +  1 )
df-9 9184 |-  9  =  ( 8  +  1 )
cn0 9377 class  NN0
df-n0 9378 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9440 class NN0*
df-xnn0 9441 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9454 class  ZZ
df-z 9455 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9586 class ; A B
df-dec 9587 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9730 class  ZZ>=
df-uz 9731 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9822 class  QQ
df-q 9823 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9857 class  RR+
df-rp 9858 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9973 class  -e A
cxad 9974 class  +e
cxmu 9975 class  xe
df-xneg 9976 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9977 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9978 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 10092 class  (,)
cioc 10093 class  (,]
cico 10094 class  [,)
cicc 10095 class  [,]
df-ioo 10096 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 10097 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 10098 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 10099 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 10212 class  ...
df-fz 10213 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10346 class ..^
df-fzo 10347 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10496 class  |_
cceil 10497 class
df-fl 10498 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10499 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10552 class  mod
df-mod 10553 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10677 class  seq M (  .+  ,  F )
df-seqfrec 10678 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10768 class  ^
df-exp 10769 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10955 class  !
df-fac 10956 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10977 class  _C
df-bc 10978 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 11005 class
df-ihash 11006 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cword 11079 class Word  S
df-word 11080 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
clsw 11124 class lastS
df-lsw 11125 |- lastS  =  ( w  e. 
_V  |->  ( w `  ( ( `  w )  -  1 ) ) )
cconcat 11133 class ++
df-concat 11134 |- ++ 
=  ( s  e. 
_V ,  t  e. 
_V  |->  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( `  s ) ) ) ) ) )
cs1 11156 class  <" A ">
df-s1 11157 |-  <" A ">  =  { <. 0 ,  (  _I  `  A )
>. }
csubstr 11185 class substr
df-substr 11186 |- substr  =  ( s  e. 
_V ,  b  e.  ( ZZ  X.  ZZ )  |->  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) ) )
cpfx 11212 class prefix
df-pfx 11213 |- prefix  =  ( s  e. 
_V ,  l  e. 
NN0  |->  ( s substr  <. 0 ,  l >. ) )
cs2 11289 class  <" A B ">
cs3 11290 class  <" A B C ">
cs4 11291 class  <" A B C D ">
cs5 11292 class  <" A B C D E ">
cs6 11293 class  <" A B C D E F ">
cs7 11294 class  <" A B C D E F G ">
cs8 11295 class  <" A B C D E F G H ">
df-s2 11296 |-  <" A B ">  =  ( <" A "> ++  <" B "> )
df-s3 11297 |-  <" A B C ">  =  (
<" A B "> ++  <" C "> )
df-s4 11298 |-  <" A B C D ">  =  ( <" A B C "> ++  <" D "> )
df-s5 11299 |-  <" A B C D E ">  =  ( <" A B C D "> ++  <" E "> )
df-s6 11300 |-  <" A B C D E F ">  =  ( <" A B C D E "> ++  <" F "> )
df-s7 11301 |-  <" A B C D E F G ">  =  (
<" A B C D E F "> ++  <" G "> )
df-s8 11302 |-  <" A B C D E F G H ">  =  ( <" A B C D E F G "> ++  <" H "> )
cshi 11333 class  shift
df-shft 11334 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 11358 class  *
cre 11359 class  Re
cim 11360 class  Im
df-cj 11361 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 11362 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 11363 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 11515 class  sqr
cabs 11516 class  abs
df-rsqrt 11517 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 11518 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11797 class  ~~>
df-clim 11798 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11872 class  sum_ k  e.  A  B
df-sumdc 11873 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 12069 class  prod_
k  e.  A  B
df-proddc 12070 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 12161 class  exp
ceu 12162 class  _e
csin 12163 class  sin
ccos 12164 class  cos
ctan 12165 class  tan
cpi 12166 class  pi
df-ef 12167 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 12168 |-  _e  =  ( exp `  1 )
df-sin 12169 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 12170 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 12171 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 12172 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 12294 class  tau
df-tau 12295 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 12306 class  ||
df-dvds 12307 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cbits 12459 class bits
df-bits 12460 |- bits 
=  ( n  e.  ZZ  |->  { m  e. 
NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) } )
cgcd 12482 class  gcd
df-gcd 12483 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 12590 class lcm
df-lcm 12591 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12637 class  Prime
df-prm 12638 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12711 class numer
cdenom 12712 class denom
df-numer 12713 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12714 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12738 class  odZ
cphi 12739 class  phi
df-odz 12740 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12741 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12815 class  pCnt
df-pc 12816 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12900 class  ZZ[_i]
df-gz 12901 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 13036 class Struct
cnx 13037 class  ndx
csts 13038 class sSet
cslot 13039 class Slot  A
cbs 13040 class  Base
cress 13041 classs
df-struct 13042 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 13043 |- 
ndx  =  (  _I  |`  NN )
df-slot 13044 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 13046 |- 
Base  = Slot  1
df-sets 13047 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-iress 13048 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) ) >.
) )
cplusg 13118 class  +g
cmulr 13119 class  .r
cstv 13120 class  *r
csca 13121 class Scalar
cvsca 13122 class  .s
cip 13123 class  .i
cts 13124 class TopSet
cple 13125 class  le
coc 13126 class  oc
cds 13127 class  dist
cunif 13128 class  UnifSet
chom 13129 class  Hom
cco 13130 class comp
df-plusg 13131 |- 
+g  = Slot  2
df-mulr 13132 |- 
.r  = Slot  3
df-starv 13133 |-  *r  = Slot  4
df-sca 13134 |- Scalar  = Slot  5
df-vsca 13135 |-  .s  = Slot  6
df-ip 13136 |-  .i  = Slot  8
df-tset 13137 |- TopSet  = Slot  9
df-ple 13138 |- 
le  = Slot ; 1 0
df-ocomp 13139 |-  oc  = Slot ; 1 1
df-ds 13140 |-  dist 
= Slot ; 1 2
df-unif 13141 |- 
UnifSet  = Slot ; 1 3
df-hom 13142 |- 
Hom  = Slot ; 1 4
df-cco 13143 |- comp 
= Slot ; 1 5
crest 13280 classt
ctopn 13281 class  TopOpen
df-rest 13282 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 13283 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 13295 class  topGen
cpt 13296 class  Xt_
c0g 13297 class  0g
cgsu 13298 class  gsumg
df-0g 13299 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-igsum 13300 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
df-topgen 13301 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 13302 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 13306 class  X_s
cpws 13307 class  ^s
df-prds 13308 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 13331 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cimas 13340 class  "s
cqus 13341 class  /.s
cxps 13342 class  X.s
df-iimas 13343 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
df-qus 13344 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 13345 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
cplusf 13394 class  +f
cmgm 13395 class Mgm
df-plusf 13396 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 13397 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 13442 class Smgrp
df-sgrp 13443 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 13457 class  Mnd
df-mnd 13458 |- 
Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. x  e.  b 
( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 13498 class MndHom
csubmnd 13499 class SubMnd
df-mhm 13500 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 13501 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cgrp 13541 class  Grp
cminusg 13542 class  invg
csg 13543 class  -g
df-grp 13544 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 13545 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 13546 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 13664 class .g
df-mulg 13665 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 13712 class SubGrp
cnsg 13713 class NrmSGrp
cqg 13714 class ~QG
df-subg 13715 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 13716 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 13717 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 13785 class  GrpHom
df-ghm 13786 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
ccmn 13829 class CMnd
cabl 13830 class  Abel
df-cmn 13831 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 13832 |- 
Abel  =  ( Grp  i^i CMnd
)
cmgp 13891 class mulGrp
df-mgp 13892 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
crng 13903 class Rng
df-rng 13904 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  / 
b ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
cur 13930 class  1r
df-ur 13931 |-  1r  =  ( 0g  o. mulGrp )
csrg 13934 class SRing
df-srg 13935 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 13967 class  Ring
ccrg 13968 class  CRing
df-ring 13969 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 13970 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 14038 class oppr
df-oppr 14039 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 14057 class  ||r
cui 14058 class Unit
cir 14059 class Irred
df-dvdsr 14060 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 14061 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 14062 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 14092 class  invr
df-invr 14093 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 14103 class /r
df-dvr 14104 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 14122 class RingHom
crs 14123 class RingIso
df-rhm 14124 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rim 14125 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
cnzr 14151 class NzRing
df-nzr 14152 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
clring 14162 class LRing
df-lring 14163 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
csubrng 14169 class SubRng
df-subrng 14170 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng } )
csubrg 14189 class SubRing
crgspn 14190 class RingSpan
df-subrg 14191 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 14192 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
crlreg 14227 class RLReg
cdomn 14228 class Domn
cidom 14229 class IDomn
df-rlreg 14230 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 14231 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 14232 |- IDomn  =  ( CRing  i^i Domn )
capr 14252 class #r
df-apr 14253 |- #r  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
) } )
clmod 14259 class  LMod
cscaf 14260 class  .sf
df-lmod 14261 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 14262 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 14324 class  LSubSp
df-lssm 14325 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
clspn 14358 class  LSpan
df-lsp 14359 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
csra 14405 class subringAlg
crglmod 14406 class ringLMod
df-sra 14407 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 14408 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
clidl 14439 class LIdeal
crsp 14440 class RSpan
df-lidl 14441 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 14442 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 14471 class 2Ideal
df-2idl 14472 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
cpsmet 14507 class PsMet
cxmet 14508 class  *Met
cmet 14509 class  Met
cbl 14510 class  ball
cfbas 14511 class  fBas
cfg 14512 class  filGen
cmopn 14513 class  MetOpen
cmetu 14514 class metUnif
df-psmet 14515 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 14516 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 14517 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 14518 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 14519 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 14520 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 14521 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 14522 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 14528 classfld
df-cnfld 14529 |-fld  =  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
czring 14562 classring
df-zring 14563 |-ring  =  (flds  ZZ )
czrh 14583 class  ZRHom
czlm 14584 class  ZMod
czn 14585 class ℤ/n
df-zrh 14586 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 14587 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-zn 14588 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
cmps 14633 class mPwSer
cmpl 14634 class mPoly
df-psr 14635 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
df-mplcoe 14636 |- mPoly  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ ( i mPwSer  r
)  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
ctop 14679 class  Top
df-top 14680 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 14692 class TopOn
df-topon 14693 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 14712 class  TopSp
df-topsp 14713 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 14724 class  TopBases
df-bases 14725 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 14774 class  Clsd
cnt 14775 class  int
ccl 14776 class  cls
df-cld 14777 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 14778 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 14779 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 14820 class  nei
df-nei 14821 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 14867 class  Cn
ccnp 14868 class  CnP
clm 14869 class  ~~> t
df-cn 14870 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 14871 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 14872 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 14934 class  tX
df-tx 14935 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 14982 class  Homeo
df-hmeo 14983 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 15018 class  *MetSp
cms 15019 class  MetSp
ctms 15020 class toMetSp
df-xms 15021 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 15022 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 15023 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 15252 class  -cn->
df-cncf 15253 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 15336 class lim CC
cdv 15337 class  _D
df-limced 15338 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 15339 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
cply 15410 class Poly
cidp 15411 class  Xp
df-ply 15412 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 15413 |-  Xp  =  (  _I  |`  CC )
clog 15538 class  log
ccxp 15539 class  ^c
df-relog 15540 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 15541 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 15625 class logb
df-logb 15626 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
csgm 15663 class  sigma
df-sgm 15664 |- 
sigma  =  ( x  e.  CC ,  n  e.  NN  |->  sum_ k  e.  {
p  e.  NN  |  p  ||  n }  (
k  ^c  x ) )
clgs 15684 class  /L
df-lgs 15685 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
cedgf 15813 class .ef
df-edgf 15814 |- .ef 
= Slot ; 1 8
cvtx 15821 class Vtx
ciedg 15822 class iEdg
df-vtx 15823 |- Vtx 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g ) ,  (
Base `  g )
) )
df-iedg 15824 |- iEdg 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 2nd `  g ) ,  (.ef
`  g ) ) )
cedg 15866 class Edg
df-edg 15867 |- Edg 
=  ( g  e. 
_V  |->  ran  (iEdg `  g
) )
cuhgr 15875 class UHGraph
cushgr 15876 class USHGraph
df-uhgrm 15877 |- UHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { s  e.  ~P v  |  E. j 
j  e.  s } }
df-ushgrm 15878 |- USHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s } }
cupgr 15899 class UPGraph
cumgr 15900 class UMGraph
df-upgren 15901 |- UPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
df-umgren 15902 |- UMGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
cuspgr 15959 class USPGraph
cusgr 15960 class USGraph
df-uspgren 15961 |- USPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
df-usgren 15962 |- USGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  x  ~~  2o } }
cwlks 16038 class Walks
df-wlks 16039 |- Walks  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( `  f )
) --> (Vtx `  g
)  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
ctrls 16099 class Trails
df-trls 16100 |- Trails  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Walks `  g
) p  /\  Fun  `' f ) } )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 16181 wff 
A DECIDin  B
df-dcin 16182 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 16199 wff BOUNDED  ph
ax-bd0 16200 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 16201 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 16202 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 16203 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 16204 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 16205 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 16206 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 16207 |- BOUNDED  x  =  y
ax-bdel 16208 |- BOUNDED  x  e.  y
ax-bdsb 16209 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 16227 wff BOUNDED  A
df-bdc 16228 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 16271 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 16311 |- BOUNDED  ph   =>    |- DECID  ph
wind 16313 wff Ind  A
df-bj-ind 16314 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 16328 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 16355 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 16363 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 16369 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 16374 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 16376 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 16474 wff  A.! x ( ph  ->  ps )
walsc 16475 wff  A.! x  e.  A ph
df-alsi 16476 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 16477 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator