ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 104 wff  ( ph  /\  ps )
wb 105 wff  ( ph  <->  ps )
ax-ia1 106 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 107 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 108 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 117 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 615 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 616 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 709 wff  ( ph  \/  ps )
ax-io 710 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 831 wff STAB  ph
df-stab 832 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 835 wff DECID  ph
df-dc 836 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
w3o 979 wff  ( ph  \/  ps  \/  ch )
w3a 980 wff  ( ph  /\  ps  /\ 
ch )
df-3or 981 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 982 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1362 wff  A. x ph
cv 1363 class  x
wceq 1364 wff 
A  =  B
wtru 1365 wff T.
df-tru 1367 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1369 wff F.
df-fal 1370 |-  ( F.  <->  -. T.  )
wxo 1386 wff  ( ph  \/_  ps )
df-xor 1387 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1458 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1459 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1460 |- 
ph   =>    |- 
A. x ph
wnf 1471 wff 
F/ x ph
df-nf 1472 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1503 wff 
E. x ph
ax-ie1 1504 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1505 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1515 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1516 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1517 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1518 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1520 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1521 |-  ( A. x ph  ->  ph )
ax-17 1537 |-  ( ph  ->  A. x ph )
ax-i9 1541 |-  E. x  x  =  y
ax-ial 1545 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1546 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1727 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1773 wff 
[ y  /  x ] ph
df-sb 1774 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1825 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1834 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2042 wff 
E! x ph
wmo 2043 wff 
E* x ph
df-eu 2045 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2046 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2164 wff 
A  e.  B
ax-13 2166 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2167 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2175 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2179 class  { x  |  ph }
df-clab 2180 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2186 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2189 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2323 wff  F/_ x A
df-nfc 2325 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2364 wff 
A  =/=  B
df-ne 2365 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2459 wff 
A  e/  B
df-nel 2460 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2472 wff  A. x  e.  A  ph
wrex 2473 wff 
E. x  e.  A  ph
wreu 2474 wff 
E! x  e.  A  ph
wrmo 2475 wff 
E* x  e.  A  ph
crab 2476 class  { x  e.  A  |  ph }
df-ral 2477 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2478 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2479 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2480 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2481 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2760 class  _V
df-v 2762 |-  _V  =  { x  |  x  =  x }
wcdeq 2969 wff CondEq ( x  =  y  ->  ph )
df-cdeq 2970 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 2986 wff  [. A  /  x ]. ph
df-sbc 2987 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3081 class  [_ A  /  x ]_ B
df-csb 3082 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3151 class  ( A  \  B )
cun 3152 class  ( A  u.  B )
cin 3153 class  ( A  i^i  B )
wss 3154 wff 
A  C_  B
df-dif 3156 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3158 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3160 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3167 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3447 class  (/)
df-nul 3448 |-  (/)  =  ( _V  \  _V )
cif 3558 class  if ( ph ,  A ,  B )
df-if 3559 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3602 class  ~P A
df-pw 3604 |-  ~P A  =  {
x  |  x  C_  A }
csn 3619 class  { A }
cpr 3620 class  { A ,  B }
ctp 3621 class  { A ,  B ,  C }
cop 3622 class  <. A ,  B >.
cotp 3623 class  <. A ,  B ,  C >.
df-sn 3625 |-  { A }  =  {
x  |  x  =  A }
df-pr 3626 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3627 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3628 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3629 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3836 class  U. A
df-uni 3837 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3871 class  |^| A
df-int 3872 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3913 class  U_ x  e.  A  B
ciin 3914 class  |^|_
x  e.  A  B
df-iun 3915 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3916 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4007 wff Disj  x  e.  A  B
df-disj 4008 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4030 wff 
A R B
df-br 4031 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4090 class  {
<. x ,  y >.  |  ph }
cmpt 4091 class  ( x  e.  A  |->  B )
df-opab 4092 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4093 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4128 wff 
Tr  A
df-tr 4129 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4145 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4148 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4156 |- 
E. x A. y  -.  y  e.  x
ax-pow 4204 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4224 wff EXMID
df-exmid 4225 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4239 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4319 class  _E
cid 4320 class  _I
df-eprel 4321 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4325 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4326 wff 
R  Po  A
wor 4327 wff 
R  Or  A
df-po 4328 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4329 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4359 wff FrFor  R A S
wfr 4360 wff 
R  Fr  A
wse 4361 wff 
R Se  A
wwe 4362 wff 
R  We  A
df-frfor 4363 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4364 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4365 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4366 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4394 wff 
Ord  A
con0 4395 class  On
wlim 4396 wff 
Lim  A
csuc 4397 class  suc 
A
df-iord 4398 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4400 |-  On  =  { x  |  Ord  x }
df-ilim 4401 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4403 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4465 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4570 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4621 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4623 class  om
df-iom 4624 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4658 class  ( A  X.  B )
ccnv 4659 class  `' A
cdm 4660 class  dom 
A
crn 4661 class  ran 
A
cres 4662 class  ( A  |`  B )
cima 4663 class  ( A " B )
ccom 4664 class  ( A  o.  B )
wrel 4665 wff 
Rel  A
df-xp 4666 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4667 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4668 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4669 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4670 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4671 |-  ran  A  =  dom  `' A
df-res 4672 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4673 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5214 class  ( iota x ph )
df-iota 5216 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5249 wff 
Fun  A
wfn 5250 wff 
A  Fn  B
wf 5251 wff 
F : A --> B
wf1 5252 wff 
F : A -1-1-> B
wfo 5253 wff 
F : A -onto-> B
wf1o 5254 wff 
F : A -1-1-onto-> B
cfv 5255 class  ( F `  A )
wiso 5256 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5257 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5258 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5259 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5260 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5261 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5262 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5263 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5264 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5873 class  (
iota_ x  e.  A  ph )
df-riota 5874 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5919 class  ( A F B )
coprab 5920 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5921 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5922 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5923 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5924 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6130 class  oF R
cofr 6131 class  oR R
df-of 6132 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6133 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6193 class  1st
c2nd 6194 class  2nd
df-1st 6195 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6196 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6299 class tpos  F
df-tpos 6300 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6340 wff 
Smo  A
df-smo 6341 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6359 class recs ( F )
df-recs 6360 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6424 class  rec ( F ,  I
)
df-irdg 6425 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6445 class frec ( F ,  I )
df-frec 6446 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6464 class  1o
c2o 6465 class  2o
c3o 6466 class  3o
c4o 6467 class  4o
coa 6468 class  +o
comu 6469 class  .o
coei 6470 classo
df-1o 6471 |-  1o  =  suc  (/)
df-2o 6472 |-  2o  =  suc  1o
df-3o 6473 |-  3o  =  suc  2o
df-4o 6474 |-  4o  =  suc  3o
df-oadd 6475 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6476 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6477 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6586 wff 
R  Er  A
cec 6587 class  [ A ] R
cqs 6588 class  ( A /. R )
df-er 6589 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6591 |-  [ A ] R  =  ( R " { A } )
df-qs 6595 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6704 class  ^m
cpm 6705 class  ^pm
df-map 6706 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6707 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6754 class  X_ x  e.  A  B
df-ixp 6755 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6794 class  ~~
cdom 6795 class  ~<_
cfn 6796 class  Fin
df-en 6797 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6798 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6799 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 7029 class  fi
df-fi 7030 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 7043 class  sup ( A ,  B ,  R )
cinf 7044 class inf ( A ,  B ,  R )
df-sup 7045 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 7046 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 7098 class  ( A B )
df-dju 7099 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7106 class inl
cinr 7107 class inr
df-inl 7108 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7109 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7144 class case ( R ,  S )
df-case 7145 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7163 class  ( R ⊔d  S )
df-djud 7164 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7180 class
df-nninf 7181 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7195 class Omni
df-omni 7196 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7212 class Markov
df-markov 7213 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7224 class WOmni
df-womni 7225 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7241 class  card
df-card 7242 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
wac 7267 wff CHOICE
df-ac 7268 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wap 7309 wff 
R Ap  A
df-pap 7310 |-  ( R Ap  A  <->  ( ( R  C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  y R z ) ) ) ) )
wtap 7311 wff 
R TAp  A
df-tap 7312 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) ) )
wacc 7324 wff CCHOICE
df-cc 7325 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7334 class  N.
cpli 7335 class  +N
cmi 7336 class  .N
clti 7337 class  <N
cplpq 7338 class  +pQ
cmpq 7339 class  .pQ
cltpq 7340 class  <pQ
ceq 7341 class  ~Q
cnq 7342 class  Q.
c1q 7343 class  1Q
cplq 7344 class  +Q
cmq 7345 class  .Q
crq 7346 class  *Q
cltq 7347 class  <Q
ceq0 7348 class ~Q0
cnq0 7349 class Q0
c0q0 7350 class 0Q0
cplq0 7351 class +Q0
cmq0 7352 class ·Q0
cnp 7353 class  P.
c1p 7354 class  1P
cpp 7355 class  +P.
cmp 7356 class  .P.
cltp 7357 class  <P
cer 7358 class  ~R
cnr 7359 class  R.
c0r 7360 class  0R
c1r 7361 class  1R
cm1r 7362 class  -1R
cplr 7363 class  +R
cmr 7364 class  .R
cltr 7365 class  <R
df-ni 7366 |-  N.  =  ( om  \  { (/) } )
df-pli 7367 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7368 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7369 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7406 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7407 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7408 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7409 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7410 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7411 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7412 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7413 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7414 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7415 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7486 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7487 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7488 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7489 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7490 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7528 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7529 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7530 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7531 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7532 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7788 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7789 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7790 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7791 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7792 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7793 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7794 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7795 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7872 class  CC
cr 7873 class  RR
cc0 7874 class  0
c1 7875 class  1
ci 7876 class  _i
caddc 7877 class  +
cltrr 7878 class  <RR
cmul 7879 class  x.
df-c 7880 |-  CC  =  ( R.  X.  R. )
df-0 7881 |-  0  =  <. 0R ,  0R >.
df-1 7882 |-  1  =  <. 1R ,  0R >.
df-i 7883 |-  _i  =  <. 0R ,  1R >.
df-r 7884 |-  RR  =  ( R.  X.  { 0R } )
df-add 7885 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7886 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 7887 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 7965 |-  CC  e.  _V
ax-resscn 7966 |-  RR  C_  CC
ax-1cn 7967 |-  1  e.  CC
ax-1re 7968 |-  1  e.  RR
ax-icn 7969 |-  _i  e.  CC
ax-addcl 7970 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 7971 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 7972 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 7973 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 7974 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 7975 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 7976 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 7977 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 7978 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 7979 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 7980 |-  0  <RR  1
ax-1rid 7981 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 7982 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 7983 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 7984 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 7985 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 7986 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 7987 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 7988 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 7989 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 7990 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 7991 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 7992 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 7993 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 7994 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 7995 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 7996 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 7997 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 8053 class +oo
cmnf 8054 class -oo
cxr 8055 class  RR*
clt 8056 class  <
cle 8057 class  <_
df-pnf 8058 |- +oo  =  ~P U. CC
df-mnf 8059 |- -oo  =  ~P +oo
df-xr 8060 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 8061 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 8062 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8192 class  -
cneg 8193 class  -u A
df-sub 8194 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8195 |-  -u A  =  (
0  -  A )
creap 8595 class #
df-reap 8596 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8602 class #
df-ap 8603 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8693 class  /
df-div 8694 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 8984 class  NN
df-inn 8985 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 9035 class  2
c3 9036 class  3
c4 9037 class  4
c5 9038 class  5
c6 9039 class  6
c7 9040 class  7
c8 9041 class  8
c9 9042 class  9
df-2 9043 |-  2  =  ( 1  +  1 )
df-3 9044 |-  3  =  ( 2  +  1 )
df-4 9045 |-  4  =  ( 3  +  1 )
df-5 9046 |-  5  =  ( 4  +  1 )
df-6 9047 |-  6  =  ( 5  +  1 )
df-7 9048 |-  7  =  ( 6  +  1 )
df-8 9049 |-  8  =  ( 7  +  1 )
df-9 9050 |-  9  =  ( 8  +  1 )
cn0 9243 class  NN0
df-n0 9244 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9306 class NN0*
df-xnn0 9307 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9320 class  ZZ
df-z 9321 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9451 class ; A B
df-dec 9452 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9595 class  ZZ>=
df-uz 9596 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9687 class  QQ
df-q 9688 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9722 class  RR+
df-rp 9723 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9838 class  -e A
cxad 9839 class  +e
cxmu 9840 class  xe
df-xneg 9841 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9842 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9843 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 9957 class  (,)
cioc 9958 class  (,]
cico 9959 class  [,)
cicc 9960 class  [,]
df-ioo 9961 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 9962 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 9963 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 9964 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 10077 class  ...
df-fz 10078 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10211 class ..^
df-fzo 10212 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10340 class  |_
cceil 10341 class
df-fl 10342 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10343 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10396 class  mod
df-mod 10397 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10521 class  seq M (  .+  ,  F )
df-seqfrec 10522 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10612 class  ^
df-exp 10613 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10799 class  !
df-fac 10800 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10821 class  _C
df-bc 10822 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10849 class
df-ihash 10850 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cword 10917 class Word  S
df-word 10918 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
cshi 10961 class  shift
df-shft 10962 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 10986 class  *
cre 10987 class  Re
cim 10988 class  Im
df-cj 10989 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 10990 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 10991 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 11143 class  sqr
cabs 11144 class  abs
df-rsqrt 11145 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 11146 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11424 class  ~~>
df-clim 11425 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11499 class  sum_ k  e.  A  B
df-sumdc 11500 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 11696 class  prod_
k  e.  A  B
df-proddc 11697 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 11788 class  exp
ceu 11789 class  _e
csin 11790 class  sin
ccos 11791 class  cos
ctan 11792 class  tan
cpi 11793 class  pi
df-ef 11794 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 11795 |-  _e  =  ( exp `  1 )
df-sin 11796 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 11797 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 11798 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 11799 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 11921 class  tau
df-tau 11922 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 11933 class  ||
df-dvds 11934 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cgcd 12082 class  gcd
df-gcd 12083 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 12201 class lcm
df-lcm 12202 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12248 class  Prime
df-prm 12249 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12322 class numer
cdenom 12323 class denom
df-numer 12324 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12325 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12349 class  odZ
cphi 12350 class  phi
df-odz 12351 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12352 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12425 class  pCnt
df-pc 12426 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12510 class  ZZ[_i]
df-gz 12511 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 12617 class Struct
cnx 12618 class  ndx
csts 12619 class sSet
cslot 12620 class Slot  A
cbs 12621 class  Base
cress 12622 classs
df-struct 12623 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 12624 |- 
ndx  =  (  _I  |`  NN )
df-slot 12625 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 12627 |- 
Base  = Slot  1
df-sets 12628 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-iress 12629 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) ) >.
) )
cplusg 12698 class  +g
cmulr 12699 class  .r
cstv 12700 class  *r
csca 12701 class Scalar
cvsca 12702 class  .s
cip 12703 class  .i
cts 12704 class TopSet
cple 12705 class  le
coc 12706 class  oc
cds 12707 class  dist
cunif 12708 class  UnifSet
chom 12709 class  Hom
cco 12710 class comp
df-plusg 12711 |- 
+g  = Slot  2
df-mulr 12712 |- 
.r  = Slot  3
df-starv 12713 |-  *r  = Slot  4
df-sca 12714 |- Scalar  = Slot  5
df-vsca 12715 |-  .s  = Slot  6
df-ip 12716 |-  .i  = Slot  8
df-tset 12717 |- TopSet  = Slot  9
df-ple 12718 |- 
le  = Slot ; 1 0
df-ocomp 12719 |-  oc  = Slot ; 1 1
df-ds 12720 |-  dist 
= Slot ; 1 2
df-unif 12721 |- 
UnifSet  = Slot ; 1 3
df-hom 12722 |- 
Hom  = Slot ; 1 4
df-cco 12723 |- comp 
= Slot ; 1 5
crest 12853 classt
ctopn 12854 class  TopOpen
df-rest 12855 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 12856 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 12868 class  topGen
cpt 12869 class  Xt_
c0g 12870 class  0g
cgsu 12871 class  gsumg
df-0g 12872 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-igsum 12873 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
df-topgen 12874 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 12875 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 12879 class  X_s
cpws 12880 class  ^s
df-prds 12881 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 12884 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cimas 12885 class  "s
cqus 12886 class  /.s
cxps 12887 class  X.s
df-iimas 12888 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
df-qus 12889 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 12890 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
cplusf 12939 class  +f
cmgm 12940 class Mgm
df-plusf 12941 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 12942 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 12987 class Smgrp
df-sgrp 12988 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 13000 class  Mnd
df-mnd 13001 |- 
Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. x  e.  b 
( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 13032 class MndHom
csubmnd 13033 class SubMnd
df-mhm 13034 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 13035 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cgrp 13075 class  Grp
cminusg 13076 class  invg
csg 13077 class  -g
df-grp 13078 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 13079 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 13080 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 13192 class .g
df-mulg 13193 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 13240 class SubGrp
cnsg 13241 class NrmSGrp
cqg 13242 class ~QG
df-subg 13243 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 13244 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 13245 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 13313 class  GrpHom
df-ghm 13314 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
ccmn 13357 class CMnd
cabl 13358 class  Abel
df-cmn 13359 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 13360 |- 
Abel  =  ( Grp  i^i CMnd
)
cmgp 13419 class mulGrp
df-mgp 13420 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
crng 13431 class Rng
df-rng 13432 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  / 
b ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
cur 13458 class  1r
df-ur 13459 |-  1r  =  ( 0g  o. mulGrp )
csrg 13462 class SRing
df-srg 13463 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 13495 class  Ring
ccrg 13496 class  CRing
df-ring 13497 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 13498 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 13566 class oppr
df-oppr 13567 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 13585 class  ||r
cui 13586 class Unit
cir 13587 class Irred
df-dvdsr 13588 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 13589 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 13590 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 13619 class  invr
df-invr 13620 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 13630 class /r
df-dvr 13631 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 13649 class RingHom
crs 13650 class RingIso
df-rhm 13651 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rim 13652 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
cnzr 13678 class NzRing
df-nzr 13679 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
clring 13689 class LRing
df-lring 13690 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
csubrng 13696 class SubRng
df-subrng 13697 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng } )
csubrg 13716 class SubRing
crgspn 13717 class RingSpan
df-subrg 13718 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 13719 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
crlreg 13754 class RLReg
cdomn 13755 class Domn
cidom 13756 class IDomn
df-rlreg 13757 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 13758 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 13759 |- IDomn  =  ( CRing  i^i Domn )
capr 13779 class #r
df-apr 13780 |- #r  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
) } )
clmod 13786 class  LMod
cscaf 13787 class  .sf
df-lmod 13788 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 13789 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 13851 class  LSubSp
df-lssm 13852 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
clspn 13885 class  LSpan
df-lsp 13886 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
csra 13932 class subringAlg
crglmod 13933 class ringLMod
df-sra 13934 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 13935 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
clidl 13966 class LIdeal
crsp 13967 class RSpan
df-lidl 13968 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 13969 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 13998 class 2Ideal
df-2idl 13999 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
cpsmet 14034 class PsMet
cxmet 14035 class  *Met
cmet 14036 class  Met
cbl 14037 class  ball
cfbas 14038 class  fBas
cfg 14039 class  filGen
cmopn 14040 class  MetOpen
cmetu 14041 class metUnif
df-psmet 14042 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 14043 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 14044 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 14045 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 14046 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 14047 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 14048 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 14049 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 14055 classfld
df-cnfld 14056 |-fld  =  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
czring 14089 classring
df-zring 14090 |-ring  =  (flds  ZZ )
czrh 14110 class  ZRHom
czlm 14111 class  ZMod
czn 14112 class ℤ/n
df-zrh 14113 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 14114 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-zn 14115 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
cmps 14160 class mPwSer
df-psr 14161 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
ctop 14176 class  Top
df-top 14177 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 14189 class TopOn
df-topon 14190 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 14209 class  TopSp
df-topsp 14210 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 14221 class  TopBases
df-bases 14222 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 14271 class  Clsd
cnt 14272 class  int
ccl 14273 class  cls
df-cld 14274 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 14275 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 14276 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 14317 class  nei
df-nei 14318 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 14364 class  Cn
ccnp 14365 class  CnP
clm 14366 class  ~~> t
df-cn 14367 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 14368 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 14369 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 14431 class  tX
df-tx 14432 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 14479 class  Homeo
df-hmeo 14480 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 14515 class  *MetSp
cms 14516 class  MetSp
ctms 14517 class toMetSp
df-xms 14518 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 14519 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 14520 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 14749 class  -cn->
df-cncf 14750 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 14833 class lim CC
cdv 14834 class  _D
df-limced 14835 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 14836 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
cply 14907 class Poly
cidp 14908 class  Xp
df-ply 14909 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 14910 |-  Xp  =  (  _I  |`  CC )
clog 15032 class  log
ccxp 15033 class  ^c
df-relog 15034 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 15035 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 15116 class logb
df-logb 15117 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
clgs 15154 class  /L
df-lgs 15155 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 15355 wff 
A DECIDin  B
df-dcin 15356 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 15374 wff BOUNDED  ph
ax-bd0 15375 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 15376 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 15377 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 15378 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 15379 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 15380 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 15381 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 15382 |- BOUNDED  x  =  y
ax-bdel 15383 |- BOUNDED  x  e.  y
ax-bdsb 15384 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 15402 wff BOUNDED  A
df-bdc 15403 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 15446 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 15486 |- BOUNDED  ph   =>    |- DECID  ph
wind 15488 wff Ind  A
df-bj-ind 15489 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 15503 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 15530 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 15538 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 15544 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 15549 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 15551 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 15636 wff  A.! x ( ph  ->  ps )
walsc 15637 wff  A.! x  e.  A ph
df-alsi 15638 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 15639 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator