ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 103 wff  ( ph  /\  ps )
wb 104 wff  ( ph  <->  ps )
ax-ia1 105 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 106 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 107 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 116 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 604 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 605 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 698 wff  ( ph  \/  ps )
ax-io 699 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 820 wff STAB  ph
df-stab 821 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 824 wff DECID  ph
df-dc 825 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
w3o 967 wff  ( ph  \/  ps  \/  ch )
w3a 968 wff  ( ph  /\  ps  /\ 
ch )
df-3or 969 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 970 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1341 wff  A. x ph
cv 1342 class  x
wceq 1343 wff 
A  =  B
wtru 1344 wff T.
df-tru 1346 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1348 wff F.
df-fal 1349 |-  ( F.  <->  -. T.  )
wxo 1365 wff  ( ph  \/_  ps )
df-xor 1366 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1435 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1436 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1437 |- 
ph   =>    |- 
A. x ph
wnf 1448 wff 
F/ x ph
df-nf 1449 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1480 wff 
E. x ph
ax-ie1 1481 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1482 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1492 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1493 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1494 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1495 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1497 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1498 |-  ( A. x ph  ->  ph )
ax-17 1514 |-  ( ph  ->  A. x ph )
ax-i9 1518 |-  E. x  x  =  y
ax-ial 1522 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1523 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1704 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1750 wff 
[ y  /  x ] ph
df-sb 1751 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1802 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1811 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2014 wff 
E! x ph
wmo 2015 wff 
E* x ph
df-eu 2017 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2018 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2136 wff 
A  e.  B
ax-13 2138 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2139 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2147 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2151 class  { x  |  ph }
df-clab 2152 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2158 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2161 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2294 wff  F/_ x A
df-nfc 2296 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2335 wff 
A  =/=  B
df-ne 2336 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2430 wff 
A  e/  B
df-nel 2431 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2443 wff  A. x  e.  A  ph
wrex 2444 wff 
E. x  e.  A  ph
wreu 2445 wff 
E! x  e.  A  ph
wrmo 2446 wff 
E* x  e.  A  ph
crab 2447 class  { x  e.  A  |  ph }
df-ral 2448 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2449 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2450 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2451 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2452 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2725 class  _V
df-v 2727 |-  _V  =  { x  |  x  =  x }
wcdeq 2933 wff CondEq ( x  =  y  ->  ph )
df-cdeq 2934 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 2950 wff  [. A  /  x ]. ph
df-sbc 2951 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3044 class  [_ A  /  x ]_ B
df-csb 3045 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3112 class  ( A  \  B )
cun 3113 class  ( A  u.  B )
cin 3114 class  ( A  i^i  B )
wss 3115 wff 
A  C_  B
df-dif 3117 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3119 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3121 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3128 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3408 class  (/)
df-nul 3409 |-  (/)  =  ( _V  \  _V )
cif 3519 class  if ( ph ,  A ,  B )
df-if 3520 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3558 class  ~P A
df-pw 3560 |-  ~P A  =  {
x  |  x  C_  A }
csn 3575 class  { A }
cpr 3576 class  { A ,  B }
ctp 3577 class  { A ,  B ,  C }
cop 3578 class  <. A ,  B >.
cotp 3579 class  <. A ,  B ,  C >.
df-sn 3581 |-  { A }  =  {
x  |  x  =  A }
df-pr 3582 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3583 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3584 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3585 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3788 class  U. A
df-uni 3789 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3823 class  |^| A
df-int 3824 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3865 class  U_ x  e.  A  B
ciin 3866 class  |^|_
x  e.  A  B
df-iun 3867 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3868 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 3958 wff Disj  x  e.  A  B
df-disj 3959 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 3981 wff 
A R B
df-br 3982 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4041 class  {
<. x ,  y >.  |  ph }
cmpt 4042 class  ( x  e.  A  |->  B )
df-opab 4043 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4044 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4079 wff 
Tr  A
df-tr 4080 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4096 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4099 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4107 |- 
E. x A. y  -.  y  e.  x
ax-pow 4152 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4172 wff EXMID
df-exmid 4173 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4186 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4264 class  _E
cid 4265 class  _I
df-eprel 4266 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4270 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4271 wff 
R  Po  A
wor 4272 wff 
R  Or  A
df-po 4273 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4274 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4304 wff FrFor  R A S
wfr 4305 wff 
R  Fr  A
wse 4306 wff 
R Se  A
wwe 4307 wff 
R  We  A
df-frfor 4308 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4309 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4310 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4311 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4339 wff 
Ord  A
con0 4340 class  On
wlim 4341 wff 
Lim  A
csuc 4342 class  suc 
A
df-iord 4343 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4345 |-  On  =  { x  |  Ord  x }
df-ilim 4346 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4348 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4410 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4513 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4564 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4566 class  om
df-iom 4567 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4601 class  ( A  X.  B )
ccnv 4602 class  `' A
cdm 4603 class  dom 
A
crn 4604 class  ran 
A
cres 4605 class  ( A  |`  B )
cima 4606 class  ( A " B )
ccom 4607 class  ( A  o.  B )
wrel 4608 wff 
Rel  A
df-xp 4609 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4610 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4611 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4612 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4613 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4614 |-  ran  A  =  dom  `' A
df-res 4615 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4616 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5150 class  ( iota x ph )
df-iota 5152 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5181 wff 
Fun  A
wfn 5182 wff 
A  Fn  B
wf 5183 wff 
F : A --> B
wf1 5184 wff 
F : A -1-1-> B
wfo 5185 wff 
F : A -onto-> B
wf1o 5186 wff 
F : A -1-1-onto-> B
cfv 5187 class  ( F `  A )
wiso 5188 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5189 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5190 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5191 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5192 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5193 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5194 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5195 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5196 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5796 class  (
iota_ x  e.  A  ph )
df-riota 5797 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5841 class  ( A F B )
coprab 5842 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5843 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5844 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5845 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5846 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6047 class  oF R
cofr 6048 class  oR R
df-of 6049 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6050 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6103 class  1st
c2nd 6104 class  2nd
df-1st 6105 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6106 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6208 class tpos  F
df-tpos 6209 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6249 wff 
Smo  A
df-smo 6250 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6268 class recs ( F )
df-recs 6269 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6333 class  rec ( F ,  I
)
df-irdg 6334 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6354 class frec ( F ,  I )
df-frec 6355 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6373 class  1o
c2o 6374 class  2o
c3o 6375 class  3o
c4o 6376 class  4o
coa 6377 class  +o
comu 6378 class  .o
coei 6379 classo
df-1o 6380 |-  1o  =  suc  (/)
df-2o 6381 |-  2o  =  suc  1o
df-3o 6382 |-  3o  =  suc  2o
df-4o 6383 |-  4o  =  suc  3o
df-oadd 6384 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6385 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6386 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6494 wff 
R  Er  A
cec 6495 class  [ A ] R
cqs 6496 class  ( A /. R )
df-er 6497 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6499 |-  [ A ] R  =  ( R " { A } )
df-qs 6503 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6610 class  ^m
cpm 6611 class  ^pm
df-map 6612 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6613 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6660 class  X_ x  e.  A  B
df-ixp 6661 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6700 class  ~~
cdom 6701 class  ~<_
cfn 6702 class  Fin
df-en 6703 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6704 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6705 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 6929 class  fi
df-fi 6930 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 6943 class  sup ( A ,  B ,  R )
cinf 6944 class inf ( A ,  B ,  R )
df-sup 6945 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 6946 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 6998 class  ( A B )
df-dju 6999 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7006 class inl
cinr 7007 class inr
df-inl 7008 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7009 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7044 class case ( R ,  S )
df-case 7045 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7063 class  ( R ⊔d  S )
df-djud 7064 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7080 class
df-nninf 7081 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7094 class Omni
df-omni 7095 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7111 class Markov
df-markov 7112 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7123 class WOmni
df-womni 7124 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7131 class  card
df-card 7132 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
wac 7157 wff CHOICE
df-ac 7158 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wacc 7199 wff CCHOICE
df-cc 7200 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7209 class  N.
cpli 7210 class  +N
cmi 7211 class  .N
clti 7212 class  <N
cplpq 7213 class  +pQ
cmpq 7214 class  .pQ
cltpq 7215 class  <pQ
ceq 7216 class  ~Q
cnq 7217 class  Q.
c1q 7218 class  1Q
cplq 7219 class  +Q
cmq 7220 class  .Q
crq 7221 class  *Q
cltq 7222 class  <Q
ceq0 7223 class ~Q0
cnq0 7224 class Q0
c0q0 7225 class 0Q0
cplq0 7226 class +Q0
cmq0 7227 class ·Q0
cnp 7228 class  P.
c1p 7229 class  1P
cpp 7230 class  +P.
cmp 7231 class  .P.
cltp 7232 class  <P
cer 7233 class  ~R
cnr 7234 class  R.
c0r 7235 class  0R
c1r 7236 class  1R
cm1r 7237 class  -1R
cplr 7238 class  +R
cmr 7239 class  .R
cltr 7240 class  <R
df-ni 7241 |-  N.  =  ( om  \  { (/) } )
df-pli 7242 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7243 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7244 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7281 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7282 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7283 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7284 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7285 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7286 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7287 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7288 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7289 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7290 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7361 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7362 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7363 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7364 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7365 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7403 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7404 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7405 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7406 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7407 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7663 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7664 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7665 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7666 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7667 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7668 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7669 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7670 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7747 class  CC
cr 7748 class  RR
cc0 7749 class  0
c1 7750 class  1
ci 7751 class  _i
caddc 7752 class  +
cltrr 7753 class  <RR
cmul 7754 class  x.
df-c 7755 |-  CC  =  ( R.  X.  R. )
df-0 7756 |-  0  =  <. 0R ,  0R >.
df-1 7757 |-  1  =  <. 1R ,  0R >.
df-i 7758 |-  _i  =  <. 0R ,  1R >.
df-r 7759 |-  RR  =  ( R.  X.  { 0R } )
df-add 7760 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7761 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 7762 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 7840 |-  CC  e.  _V
ax-resscn 7841 |-  RR  C_  CC
ax-1cn 7842 |-  1  e.  CC
ax-1re 7843 |-  1  e.  RR
ax-icn 7844 |-  _i  e.  CC
ax-addcl 7845 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 7846 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 7847 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 7848 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 7849 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 7850 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 7851 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 7852 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 7853 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 7854 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 7855 |-  0  <RR  1
ax-1rid 7856 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 7857 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 7858 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 7859 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 7860 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 7861 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 7862 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 7863 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 7864 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 7865 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 7866 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 7867 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 7868 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 7869 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 7870 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 7871 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 7872 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 7926 class +oo
cmnf 7927 class -oo
cxr 7928 class  RR*
clt 7929 class  <
cle 7930 class  <_
df-pnf 7931 |- +oo  =  ~P U. CC
df-mnf 7932 |- -oo  =  ~P +oo
df-xr 7933 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 7934 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 7935 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8065 class  -
cneg 8066 class  -u A
df-sub 8067 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8068 |-  -u A  =  (
0  -  A )
creap 8468 class #
df-reap 8469 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8475 class #
df-ap 8476 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8564 class  /
df-div 8565 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 8853 class  NN
df-inn 8854 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 8904 class  2
c3 8905 class  3
c4 8906 class  4
c5 8907 class  5
c6 8908 class  6
c7 8909 class  7
c8 8910 class  8
c9 8911 class  9
df-2 8912 |-  2  =  ( 1  +  1 )
df-3 8913 |-  3  =  ( 2  +  1 )
df-4 8914 |-  4  =  ( 3  +  1 )
df-5 8915 |-  5  =  ( 4  +  1 )
df-6 8916 |-  6  =  ( 5  +  1 )
df-7 8917 |-  7  =  ( 6  +  1 )
df-8 8918 |-  8  =  ( 7  +  1 )
df-9 8919 |-  9  =  ( 8  +  1 )
cn0 9110 class  NN0
df-n0 9111 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9173 class NN0*
df-xnn0 9174 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9187 class  ZZ
df-z 9188 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9318 class ; A B
df-dec 9319 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9462 class  ZZ>=
df-uz 9463 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9553 class  QQ
df-q 9554 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9585 class  RR+
df-rp 9586 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9701 class  -e A
cxad 9702 class  +e
cxmu 9703 class  xe
df-xneg 9704 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9705 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9706 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 9820 class  (,)
cioc 9821 class  (,]
cico 9822 class  [,)
cicc 9823 class  [,]
df-ioo 9824 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 9825 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 9826 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 9827 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 9940 class  ...
df-fz 9941 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10073 class ..^
df-fzo 10074 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10199 class  |_
cceil 10200 class
df-fl 10201 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10202 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10253 class  mod
df-mod 10254 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10376 class  seq M (  .+  ,  F )
df-seqfrec 10377 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10450 class  ^
df-exp 10451 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10634 class  !
df-fac 10635 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10656 class  _C
df-bc 10657 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10684 class
df-ihash 10685 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cshi 10752 class  shift
df-shft 10753 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 10777 class  *
cre 10778 class  Re
cim 10779 class  Im
df-cj 10780 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 10781 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 10782 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 10934 class  sqr
cabs 10935 class  abs
df-rsqrt 10936 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 10937 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11215 class  ~~>
df-clim 11216 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11290 class  sum_ k  e.  A  B
df-sumdc 11291 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 11487 class  prod_
k  e.  A  B
df-proddc 11488 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 11579 class  exp
ceu 11580 class  _e
csin 11581 class  sin
ccos 11582 class  cos
ctan 11583 class  tan
cpi 11584 class  pi
df-ef 11585 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 11586 |-  _e  =  ( exp `  1 )
df-sin 11587 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 11588 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 11589 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 11590 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 11711 class  tau
df-tau 11712 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 11723 class  ||
df-dvds 11724 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cgcd 11871 class  gcd
df-gcd 11872 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 11988 class lcm
df-lcm 11989 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12035 class  Prime
df-prm 12036 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12109 class numer
cdenom 12110 class denom
df-numer 12111 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12112 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12136 class  odZ
cphi 12137 class  phi
df-odz 12138 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12139 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12212 class  pCnt
df-pc 12213 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12295 class  ZZ[_i]
df-gz 12296 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 12386 class Struct
cnx 12387 class  ndx
csts 12388 class sSet
cslot 12389 class Slot  A
cbs 12390 class  Base
cress 12391 classs
df-struct 12392 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 12393 |- 
ndx  =  (  _I  |`  NN )
df-slot 12394 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 12396 |- 
Base  = Slot  1
df-sets 12397 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-ress 12398 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
cplusg 12452 class  +g
cmulr 12453 class  .r
cstv 12454 class  *r
csca 12455 class Scalar
cvsca 12456 class  .s
cip 12457 class  .i
cts 12458 class TopSet
cple 12459 class  le
coc 12460 class  oc
cds 12461 class  dist
cunif 12462 class  UnifSet
chom 12463 class  Hom
cco 12464 class comp
df-plusg 12465 |- 
+g  = Slot  2
df-mulr 12466 |- 
.r  = Slot  3
df-starv 12467 |-  *r  = Slot  4
df-sca 12468 |- Scalar  = Slot  5
df-vsca 12469 |-  .s  = Slot  6
df-ip 12470 |-  .i  = Slot  8
df-tset 12471 |- TopSet  = Slot  9
df-ple 12472 |- 
le  = Slot ; 1 0
df-ocomp 12473 |-  oc  = Slot ; 1 1
df-ds 12474 |-  dist 
= Slot ; 1 2
df-unif 12475 |- 
UnifSet  = Slot ; 1 3
df-hom 12476 |- 
Hom  = Slot ; 1 4
df-cco 12477 |- comp 
= Slot ; 1 5
crest 12551 classt
ctopn 12552 class  TopOpen
df-rest 12553 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 12554 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 12566 class  topGen
cpt 12567 class  Xt_
c0g 12568 class  0g
cgsu 12569 class  gsumg
df-0g 12570 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-gsum 12571 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  [_ { x  e.  ( Base `  w
)  |  A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y ) }  / 
o ]_ if ( ran  f  C_  o , 
( 0g `  w
) ,  if ( dom  f  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ,  ( iota x E. g [. ( `' f " ( _V 
\  o ) )  /  y ]. (
g : ( 1 ... ( `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( f  o.  g ) ) `
 ( `  y
) ) ) ) ) ) )
df-topgen 12572 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 12573 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 12574 class  X_s
cpws 12575 class  ^s
df-prds 12576 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 12578 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cpsmet 12579 class PsMet
cxmet 12580 class  *Met
cmet 12581 class  Met
cbl 12582 class  ball
cfbas 12583 class  fBas
cfg 12584 class  filGen
cmopn 12585 class  MetOpen
cmetu 12586 class metUnif
df-psmet 12587 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 12588 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 12589 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 12590 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 12591 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 12592 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 12593 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 12594 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ctop 12595 class  Top
df-top 12596 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 12608 class TopOn
df-topon 12609 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 12628 class  TopSp
df-topsp 12629 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 12640 class  TopBases
df-bases 12641 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 12692 class  Clsd
cnt 12693 class  int
ccl 12694 class  cls
df-cld 12695 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 12696 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 12697 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 12738 class  nei
df-nei 12739 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 12785 class  Cn
ccnp 12786 class  CnP
clm 12787 class  ~~> t
df-cn 12788 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 12789 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 12790 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 12852 class  tX
df-tx 12853 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 12900 class  Homeo
df-hmeo 12901 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 12936 class  *MetSp
cms 12937 class  MetSp
ctms 12938 class toMetSp
df-xms 12939 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 12940 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 12941 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 13157 class  -cn->
df-cncf 13158 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 13223 class lim CC
cdv 13224 class  _D
df-limced 13225 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 13226 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
clog 13377 class  log
ccxp 13378 class  ^c
df-relog 13379 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 13380 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 13461 class logb
df-logb 13462 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
clgs 13498 class  /L
df-lgs 13499 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 13634 wff 
A DECIDin  B
df-dcin 13635 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 13654 wff BOUNDED  ph
ax-bd0 13655 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 13656 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 13657 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 13658 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 13659 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 13660 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 13661 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 13662 |- BOUNDED  x  =  y
ax-bdel 13663 |- BOUNDED  x  e.  y
ax-bdsb 13664 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 13682 wff BOUNDED  A
df-bdc 13683 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 13726 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 13766 |- BOUNDED  ph   =>    |- DECID  ph
wind 13768 wff Ind  A
df-bj-ind 13769 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 13783 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 13810 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 13818 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 13824 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 13829 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 13831 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 13912 wff  A.! x ( ph  ->  ps )
walsc 13913 wff  A.! x  e.  A ph
df-alsi 13914 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 13915 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator