ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 104 wff  ( ph  /\  ps )
wb 105 wff  ( ph  <->  ps )
ax-ia1 106 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 107 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 108 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 117 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 615 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 616 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 709 wff  ( ph  \/  ps )
ax-io 710 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 831 wff STAB  ph
df-stab 832 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 835 wff DECID  ph
df-dc 836 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
w3o 979 wff  ( ph  \/  ps  \/  ch )
w3a 980 wff  ( ph  /\  ps  /\ 
ch )
df-3or 981 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 982 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1362 wff  A. x ph
cv 1363 class  x
wceq 1364 wff 
A  =  B
wtru 1365 wff T.
df-tru 1367 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1369 wff F.
df-fal 1370 |-  ( F.  <->  -. T.  )
wxo 1386 wff  ( ph  \/_  ps )
df-xor 1387 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1458 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1459 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1460 |- 
ph   =>    |- 
A. x ph
wnf 1471 wff 
F/ x ph
df-nf 1472 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1503 wff 
E. x ph
ax-ie1 1504 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1505 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1515 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1516 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1517 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1518 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1520 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1521 |-  ( A. x ph  ->  ph )
ax-17 1537 |-  ( ph  ->  A. x ph )
ax-i9 1541 |-  E. x  x  =  y
ax-ial 1545 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1546 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1727 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1773 wff 
[ y  /  x ] ph
df-sb 1774 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1825 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1834 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2042 wff 
E! x ph
wmo 2043 wff 
E* x ph
df-eu 2045 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2046 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2164 wff 
A  e.  B
ax-13 2166 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2167 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2175 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2179 class  { x  |  ph }
df-clab 2180 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2186 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2189 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2323 wff  F/_ x A
df-nfc 2325 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2364 wff 
A  =/=  B
df-ne 2365 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2459 wff 
A  e/  B
df-nel 2460 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2472 wff  A. x  e.  A  ph
wrex 2473 wff 
E. x  e.  A  ph
wreu 2474 wff 
E! x  e.  A  ph
wrmo 2475 wff 
E* x  e.  A  ph
crab 2476 class  { x  e.  A  |  ph }
df-ral 2477 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2478 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2479 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2480 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2481 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2760 class  _V
df-v 2762 |-  _V  =  { x  |  x  =  x }
wcdeq 2968 wff CondEq ( x  =  y  ->  ph )
df-cdeq 2969 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 2985 wff  [. A  /  x ]. ph
df-sbc 2986 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3080 class  [_ A  /  x ]_ B
df-csb 3081 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3150 class  ( A  \  B )
cun 3151 class  ( A  u.  B )
cin 3152 class  ( A  i^i  B )
wss 3153 wff 
A  C_  B
df-dif 3155 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3157 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3159 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3166 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3446 class  (/)
df-nul 3447 |-  (/)  =  ( _V  \  _V )
cif 3557 class  if ( ph ,  A ,  B )
df-if 3558 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3601 class  ~P A
df-pw 3603 |-  ~P A  =  {
x  |  x  C_  A }
csn 3618 class  { A }
cpr 3619 class  { A ,  B }
ctp 3620 class  { A ,  B ,  C }
cop 3621 class  <. A ,  B >.
cotp 3622 class  <. A ,  B ,  C >.
df-sn 3624 |-  { A }  =  {
x  |  x  =  A }
df-pr 3625 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3626 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3627 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3628 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3835 class  U. A
df-uni 3836 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3870 class  |^| A
df-int 3871 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3912 class  U_ x  e.  A  B
ciin 3913 class  |^|_
x  e.  A  B
df-iun 3914 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3915 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4006 wff Disj  x  e.  A  B
df-disj 4007 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4029 wff 
A R B
df-br 4030 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4089 class  {
<. x ,  y >.  |  ph }
cmpt 4090 class  ( x  e.  A  |->  B )
df-opab 4091 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4092 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4127 wff 
Tr  A
df-tr 4128 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4144 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4147 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4155 |- 
E. x A. y  -.  y  e.  x
ax-pow 4203 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4223 wff EXMID
df-exmid 4224 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4238 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4318 class  _E
cid 4319 class  _I
df-eprel 4320 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4324 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4325 wff 
R  Po  A
wor 4326 wff 
R  Or  A
df-po 4327 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4328 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4358 wff FrFor  R A S
wfr 4359 wff 
R  Fr  A
wse 4360 wff 
R Se  A
wwe 4361 wff 
R  We  A
df-frfor 4362 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4363 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4364 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4365 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4393 wff 
Ord  A
con0 4394 class  On
wlim 4395 wff 
Lim  A
csuc 4396 class  suc 
A
df-iord 4397 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4399 |-  On  =  { x  |  Ord  x }
df-ilim 4400 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4402 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4464 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4569 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4620 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4622 class  om
df-iom 4623 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4657 class  ( A  X.  B )
ccnv 4658 class  `' A
cdm 4659 class  dom 
A
crn 4660 class  ran 
A
cres 4661 class  ( A  |`  B )
cima 4662 class  ( A " B )
ccom 4663 class  ( A  o.  B )
wrel 4664 wff 
Rel  A
df-xp 4665 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4666 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4667 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4668 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4669 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4670 |-  ran  A  =  dom  `' A
df-res 4671 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4672 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5213 class  ( iota x ph )
df-iota 5215 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5248 wff 
Fun  A
wfn 5249 wff 
A  Fn  B
wf 5250 wff 
F : A --> B
wf1 5251 wff 
F : A -1-1-> B
wfo 5252 wff 
F : A -onto-> B
wf1o 5253 wff 
F : A -1-1-onto-> B
cfv 5254 class  ( F `  A )
wiso 5255 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5256 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5257 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5258 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5259 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5260 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5261 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5262 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5263 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5872 class  (
iota_ x  e.  A  ph )
df-riota 5873 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5918 class  ( A F B )
coprab 5919 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5920 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5921 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5922 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5923 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6128 class  oF R
cofr 6129 class  oR R
df-of 6130 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6131 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6191 class  1st
c2nd 6192 class  2nd
df-1st 6193 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6194 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6297 class tpos  F
df-tpos 6298 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6338 wff 
Smo  A
df-smo 6339 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6357 class recs ( F )
df-recs 6358 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6422 class  rec ( F ,  I
)
df-irdg 6423 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6443 class frec ( F ,  I )
df-frec 6444 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6462 class  1o
c2o 6463 class  2o
c3o 6464 class  3o
c4o 6465 class  4o
coa 6466 class  +o
comu 6467 class  .o
coei 6468 classo
df-1o 6469 |-  1o  =  suc  (/)
df-2o 6470 |-  2o  =  suc  1o
df-3o 6471 |-  3o  =  suc  2o
df-4o 6472 |-  4o  =  suc  3o
df-oadd 6473 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6474 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6475 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6584 wff 
R  Er  A
cec 6585 class  [ A ] R
cqs 6586 class  ( A /. R )
df-er 6587 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6589 |-  [ A ] R  =  ( R " { A } )
df-qs 6593 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6702 class  ^m
cpm 6703 class  ^pm
df-map 6704 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6705 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6752 class  X_ x  e.  A  B
df-ixp 6753 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6792 class  ~~
cdom 6793 class  ~<_
cfn 6794 class  Fin
df-en 6795 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6796 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6797 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 7027 class  fi
df-fi 7028 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 7041 class  sup ( A ,  B ,  R )
cinf 7042 class inf ( A ,  B ,  R )
df-sup 7043 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 7044 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 7096 class  ( A B )
df-dju 7097 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7104 class inl
cinr 7105 class inr
df-inl 7106 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7107 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7142 class case ( R ,  S )
df-case 7143 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7161 class  ( R ⊔d  S )
df-djud 7162 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7178 class
df-nninf 7179 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7193 class Omni
df-omni 7194 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7210 class Markov
df-markov 7211 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7222 class WOmni
df-womni 7223 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7239 class  card
df-card 7240 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
wac 7265 wff CHOICE
df-ac 7266 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wap 7307 wff 
R Ap  A
df-pap 7308 |-  ( R Ap  A  <->  ( ( R  C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  y R z ) ) ) ) )
wtap 7309 wff 
R TAp  A
df-tap 7310 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) ) )
wacc 7322 wff CCHOICE
df-cc 7323 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7332 class  N.
cpli 7333 class  +N
cmi 7334 class  .N
clti 7335 class  <N
cplpq 7336 class  +pQ
cmpq 7337 class  .pQ
cltpq 7338 class  <pQ
ceq 7339 class  ~Q
cnq 7340 class  Q.
c1q 7341 class  1Q
cplq 7342 class  +Q
cmq 7343 class  .Q
crq 7344 class  *Q
cltq 7345 class  <Q
ceq0 7346 class ~Q0
cnq0 7347 class Q0
c0q0 7348 class 0Q0
cplq0 7349 class +Q0
cmq0 7350 class ·Q0
cnp 7351 class  P.
c1p 7352 class  1P
cpp 7353 class  +P.
cmp 7354 class  .P.
cltp 7355 class  <P
cer 7356 class  ~R
cnr 7357 class  R.
c0r 7358 class  0R
c1r 7359 class  1R
cm1r 7360 class  -1R
cplr 7361 class  +R
cmr 7362 class  .R
cltr 7363 class  <R
df-ni 7364 |-  N.  =  ( om  \  { (/) } )
df-pli 7365 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7366 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7367 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7404 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7405 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7406 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7407 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7408 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7409 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7410 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7411 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7412 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7413 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7484 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7485 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7486 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7487 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7488 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7526 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7527 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7528 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7529 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7530 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7786 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7787 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7788 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7789 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7790 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7791 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7792 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7793 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7870 class  CC
cr 7871 class  RR
cc0 7872 class  0
c1 7873 class  1
ci 7874 class  _i
caddc 7875 class  +
cltrr 7876 class  <RR
cmul 7877 class  x.
df-c 7878 |-  CC  =  ( R.  X.  R. )
df-0 7879 |-  0  =  <. 0R ,  0R >.
df-1 7880 |-  1  =  <. 1R ,  0R >.
df-i 7881 |-  _i  =  <. 0R ,  1R >.
df-r 7882 |-  RR  =  ( R.  X.  { 0R } )
df-add 7883 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7884 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 7885 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 7963 |-  CC  e.  _V
ax-resscn 7964 |-  RR  C_  CC
ax-1cn 7965 |-  1  e.  CC
ax-1re 7966 |-  1  e.  RR
ax-icn 7967 |-  _i  e.  CC
ax-addcl 7968 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 7969 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 7970 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 7971 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 7972 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 7973 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 7974 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 7975 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 7976 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 7977 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 7978 |-  0  <RR  1
ax-1rid 7979 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 7980 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 7981 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 7982 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 7983 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 7984 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 7985 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 7986 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 7987 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 7988 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 7989 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 7990 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 7991 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 7992 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 7993 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 7994 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 7995 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 8051 class +oo
cmnf 8052 class -oo
cxr 8053 class  RR*
clt 8054 class  <
cle 8055 class  <_
df-pnf 8056 |- +oo  =  ~P U. CC
df-mnf 8057 |- -oo  =  ~P +oo
df-xr 8058 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 8059 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 8060 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8190 class  -
cneg 8191 class  -u A
df-sub 8192 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8193 |-  -u A  =  (
0  -  A )
creap 8593 class #
df-reap 8594 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8600 class #
df-ap 8601 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8691 class  /
df-div 8692 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 8982 class  NN
df-inn 8983 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 9033 class  2
c3 9034 class  3
c4 9035 class  4
c5 9036 class  5
c6 9037 class  6
c7 9038 class  7
c8 9039 class  8
c9 9040 class  9
df-2 9041 |-  2  =  ( 1  +  1 )
df-3 9042 |-  3  =  ( 2  +  1 )
df-4 9043 |-  4  =  ( 3  +  1 )
df-5 9044 |-  5  =  ( 4  +  1 )
df-6 9045 |-  6  =  ( 5  +  1 )
df-7 9046 |-  7  =  ( 6  +  1 )
df-8 9047 |-  8  =  ( 7  +  1 )
df-9 9048 |-  9  =  ( 8  +  1 )
cn0 9240 class  NN0
df-n0 9241 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9303 class NN0*
df-xnn0 9304 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9317 class  ZZ
df-z 9318 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9448 class ; A B
df-dec 9449 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9592 class  ZZ>=
df-uz 9593 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9684 class  QQ
df-q 9685 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9719 class  RR+
df-rp 9720 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9835 class  -e A
cxad 9836 class  +e
cxmu 9837 class  xe
df-xneg 9838 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9839 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9840 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 9954 class  (,)
cioc 9955 class  (,]
cico 9956 class  [,)
cicc 9957 class  [,]
df-ioo 9958 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 9959 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 9960 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 9961 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 10074 class  ...
df-fz 10075 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10208 class ..^
df-fzo 10209 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10337 class  |_
cceil 10338 class
df-fl 10339 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10340 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10393 class  mod
df-mod 10394 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10518 class  seq M (  .+  ,  F )
df-seqfrec 10519 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10609 class  ^
df-exp 10610 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10796 class  !
df-fac 10797 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10818 class  _C
df-bc 10819 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10846 class
df-ihash 10847 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cword 10914 class Word  S
df-word 10915 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
cshi 10958 class  shift
df-shft 10959 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 10983 class  *
cre 10984 class  Re
cim 10985 class  Im
df-cj 10986 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 10987 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 10988 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 11140 class  sqr
cabs 11141 class  abs
df-rsqrt 11142 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 11143 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11421 class  ~~>
df-clim 11422 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11496 class  sum_ k  e.  A  B
df-sumdc 11497 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 11693 class  prod_
k  e.  A  B
df-proddc 11694 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 11785 class  exp
ceu 11786 class  _e
csin 11787 class  sin
ccos 11788 class  cos
ctan 11789 class  tan
cpi 11790 class  pi
df-ef 11791 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 11792 |-  _e  =  ( exp `  1 )
df-sin 11793 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 11794 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 11795 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 11796 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 11918 class  tau
df-tau 11919 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 11930 class  ||
df-dvds 11931 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cgcd 12079 class  gcd
df-gcd 12080 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 12198 class lcm
df-lcm 12199 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12245 class  Prime
df-prm 12246 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12319 class numer
cdenom 12320 class denom
df-numer 12321 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12322 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12346 class  odZ
cphi 12347 class  phi
df-odz 12348 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12349 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12422 class  pCnt
df-pc 12423 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12507 class  ZZ[_i]
df-gz 12508 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 12614 class Struct
cnx 12615 class  ndx
csts 12616 class sSet
cslot 12617 class Slot  A
cbs 12618 class  Base
cress 12619 classs
df-struct 12620 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 12621 |- 
ndx  =  (  _I  |`  NN )
df-slot 12622 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 12624 |- 
Base  = Slot  1
df-sets 12625 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-iress 12626 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) ) >.
) )
cplusg 12695 class  +g
cmulr 12696 class  .r
cstv 12697 class  *r
csca 12698 class Scalar
cvsca 12699 class  .s
cip 12700 class  .i
cts 12701 class TopSet
cple 12702 class  le
coc 12703 class  oc
cds 12704 class  dist
cunif 12705 class  UnifSet
chom 12706 class  Hom
cco 12707 class comp
df-plusg 12708 |- 
+g  = Slot  2
df-mulr 12709 |- 
.r  = Slot  3
df-starv 12710 |-  *r  = Slot  4
df-sca 12711 |- Scalar  = Slot  5
df-vsca 12712 |-  .s  = Slot  6
df-ip 12713 |-  .i  = Slot  8
df-tset 12714 |- TopSet  = Slot  9
df-ple 12715 |- 
le  = Slot ; 1 0
df-ocomp 12716 |-  oc  = Slot ; 1 1
df-ds 12717 |-  dist 
= Slot ; 1 2
df-unif 12718 |- 
UnifSet  = Slot ; 1 3
df-hom 12719 |- 
Hom  = Slot ; 1 4
df-cco 12720 |- comp 
= Slot ; 1 5
crest 12850 classt
ctopn 12851 class  TopOpen
df-rest 12852 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 12853 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 12865 class  topGen
cpt 12866 class  Xt_
c0g 12867 class  0g
cgsu 12868 class  gsumg
df-0g 12869 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-igsum 12870 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
df-topgen 12871 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 12872 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 12876 class  X_s
cpws 12877 class  ^s
df-prds 12878 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 12881 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cimas 12882 class  "s
cqus 12883 class  /.s
cxps 12884 class  X.s
df-iimas 12885 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
df-qus 12886 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 12887 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
cplusf 12936 class  +f
cmgm 12937 class Mgm
df-plusf 12938 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 12939 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 12984 class Smgrp
df-sgrp 12985 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 12997 class  Mnd
df-mnd 12998 |- 
Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. x  e.  b 
( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 13029 class MndHom
csubmnd 13030 class SubMnd
df-mhm 13031 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 13032 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cgrp 13072 class  Grp
cminusg 13073 class  invg
csg 13074 class  -g
df-grp 13075 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 13076 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 13077 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 13189 class .g
df-mulg 13190 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 13237 class SubGrp
cnsg 13238 class NrmSGrp
cqg 13239 class ~QG
df-subg 13240 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 13241 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 13242 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 13310 class  GrpHom
df-ghm 13311 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
ccmn 13354 class CMnd
cabl 13355 class  Abel
df-cmn 13356 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 13357 |- 
Abel  =  ( Grp  i^i CMnd
)
cmgp 13416 class mulGrp
df-mgp 13417 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
crng 13428 class Rng
df-rng 13429 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  / 
b ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
cur 13455 class  1r
df-ur 13456 |-  1r  =  ( 0g  o. mulGrp )
csrg 13459 class SRing
df-srg 13460 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 13492 class  Ring
ccrg 13493 class  CRing
df-ring 13494 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 13495 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 13563 class oppr
df-oppr 13564 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 13582 class  ||r
cui 13583 class Unit
cir 13584 class Irred
df-dvdsr 13585 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 13586 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 13587 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 13616 class  invr
df-invr 13617 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 13627 class /r
df-dvr 13628 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 13646 class RingHom
crs 13647 class RingIso
df-rhm 13648 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rim 13649 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
cnzr 13675 class NzRing
df-nzr 13676 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
clring 13686 class LRing
df-lring 13687 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
csubrng 13693 class SubRng
df-subrng 13694 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng } )
csubrg 13713 class SubRing
crgspn 13714 class RingSpan
df-subrg 13715 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 13716 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
crlreg 13751 class RLReg
cdomn 13752 class Domn
cidom 13753 class IDomn
df-rlreg 13754 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 13755 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 13756 |- IDomn  =  ( CRing  i^i Domn )
capr 13776 class #r
df-apr 13777 |- #r  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
) } )
clmod 13783 class  LMod
cscaf 13784 class  .sf
df-lmod 13785 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 13786 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 13848 class  LSubSp
df-lssm 13849 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
clspn 13882 class  LSpan
df-lsp 13883 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
csra 13929 class subringAlg
crglmod 13930 class ringLMod
df-sra 13931 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 13932 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
clidl 13963 class LIdeal
crsp 13964 class RSpan
df-lidl 13965 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 13966 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 13995 class 2Ideal
df-2idl 13996 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
cpsmet 14031 class PsMet
cxmet 14032 class  *Met
cmet 14033 class  Met
cbl 14034 class  ball
cfbas 14035 class  fBas
cfg 14036 class  filGen
cmopn 14037 class  MetOpen
cmetu 14038 class metUnif
df-psmet 14039 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 14040 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 14041 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 14042 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 14043 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 14044 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 14045 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 14046 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 14047 classfld
df-icnfld 14048 |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
czring 14078 classring
df-zring 14079 |-ring  =  (flds  ZZ )
czrh 14099 class  ZRHom
czlm 14100 class  ZMod
czn 14101 class ℤ/n
df-zrh 14102 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 14103 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-zn 14104 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
cmps 14149 class mPwSer
df-psr 14150 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
ctop 14165 class  Top
df-top 14166 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 14178 class TopOn
df-topon 14179 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 14198 class  TopSp
df-topsp 14199 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 14210 class  TopBases
df-bases 14211 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 14260 class  Clsd
cnt 14261 class  int
ccl 14262 class  cls
df-cld 14263 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 14264 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 14265 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 14306 class  nei
df-nei 14307 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 14353 class  Cn
ccnp 14354 class  CnP
clm 14355 class  ~~> t
df-cn 14356 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 14357 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 14358 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 14420 class  tX
df-tx 14421 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 14468 class  Homeo
df-hmeo 14469 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 14504 class  *MetSp
cms 14505 class  MetSp
ctms 14506 class toMetSp
df-xms 14507 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 14508 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 14509 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 14725 class  -cn->
df-cncf 14726 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 14808 class lim CC
cdv 14809 class  _D
df-limced 14810 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 14811 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
cply 14874 class Poly
cidp 14875 class  Xp
df-ply 14876 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 14877 |-  Xp  =  (  _I  |`  CC )
clog 14991 class  log
ccxp 14992 class  ^c
df-relog 14993 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 14994 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 15075 class logb
df-logb 15076 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
clgs 15113 class  /L
df-lgs 15114 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 15285 wff 
A DECIDin  B
df-dcin 15286 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 15304 wff BOUNDED  ph
ax-bd0 15305 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 15306 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 15307 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 15308 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 15309 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 15310 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 15311 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 15312 |- BOUNDED  x  =  y
ax-bdel 15313 |- BOUNDED  x  e.  y
ax-bdsb 15314 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 15332 wff BOUNDED  A
df-bdc 15333 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 15376 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 15416 |- BOUNDED  ph   =>    |- DECID  ph
wind 15418 wff Ind  A
df-bj-ind 15419 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 15433 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 15460 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 15468 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 15474 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 15479 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 15481 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 15566 wff  A.! x ( ph  ->  ps )
walsc 15567 wff  A.! x  e.  A ph
df-alsi 15568 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 15569 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator