ILE Home Intuitionistic Logic Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
wa 104 wff  ( ph  /\  ps )
wb 105 wff  ( ph  <->  ps )
ax-ia1 106 |-  ( ( ph  /\  ps )  ->  ph )
ax-ia2 107 |-  ( ( ph  /\  ps )  ->  ps )
ax-ia3 108 |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
df-bi 117 |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )  /\  (
( ( ph  ->  ps )  /\  ( ps 
->  ph ) )  -> 
( ph  <->  ps ) ) )
ax-in1 617 |-  ( ( ph  ->  -. 
ph )  ->  -.  ph )
ax-in2 618 |-  ( -.  ph  ->  (
ph  ->  ps ) )
wo 713 wff  ( ph  \/  ps )
ax-io 714 |-  ( ( ( ph  \/  ch )  ->  ps ) 
<->  ( ( ph  ->  ps )  /\  ( ch 
->  ps ) ) )
wstab 835 wff STAB  ph
df-stab 836 |-  (STAB 
ph 
<->  ( -.  -.  ph  ->  ph ) )
wdc 839 wff DECID  ph
df-dc 840 |-  (DECID 
ph 
<->  ( ph  \/  -.  ph ) )
wif 983 wff if-
( ph ,  ps ,  ch )
df-ifp 984 |-  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) ) )
w3o 1001 wff  ( ph  \/  ps  \/  ch )
w3a 1002 wff  ( ph  /\  ps  /\ 
ch )
df-3or 1003 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 1004 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wal 1393 wff  A. x ph
cv 1394 class  x
wceq 1395 wff 
A  =  B
wtru 1396 wff T.
df-tru 1398 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1400 wff F.
df-fal 1401 |-  ( F.  <->  -. T.  )
wxo 1417 wff  ( ph  \/_  ps )
df-xor 1418 |-  ( ( ph  \/_  ps ) 
<->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
ax-5 1493 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-7 1494 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-gen 1495 |- 
ph   =>    |- 
A. x ph
wnf 1506 wff 
F/ x ph
df-nf 1507 |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
wex 1538 wff 
E. x ph
ax-ie1 1539 |-  ( E. x ph  ->  A. x E. x ph )
ax-ie2 1540 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
ax-8 1550 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-10 1551 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11 1552 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-i12 1553 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) ) )
ax-bndl 1555 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
ax-4 1556 |-  ( A. x ph  ->  ph )
ax-17 1572 |-  ( ph  ->  A. x ph )
ax-i9 1576 |-  E. x  x  =  y
ax-ial 1580 |-  ( A. x ph  ->  A. x A. x ph )
ax-i5r 1581 |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
)
ax-10o 1762 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
wsb 1808 wff 
[ y  /  x ] ph
df-sb 1809 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-16 1860 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-11o 1869 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
weu 2077 wff 
E! x ph
wmo 2078 wff 
E* x ph
df-eu 2080 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2081 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
wcel 2200 wff 
A  e.  B
ax-13 2202 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-14 2203 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-ext 2211 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2215 class  { x  |  ph }
df-clab 2216 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2222 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2225 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2359 wff  F/_ x A
df-nfc 2361 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2400 wff 
A  =/=  B
df-ne 2401 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2495 wff 
A  e/  B
df-nel 2496 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2508 wff  A. x  e.  A  ph
wrex 2509 wff 
E. x  e.  A  ph
wreu 2510 wff 
E! x  e.  A  ph
wrmo 2511 wff 
E* x  e.  A  ph
crab 2512 class  { x  e.  A  |  ph }
df-ral 2513 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2514 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2515 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2516 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2517 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 2799 class  _V
df-v 2801 |-  _V  =  { x  |  x  =  x }
wcdeq 3011 wff CondEq ( x  =  y  ->  ph )
df-cdeq 3012 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 3028 wff  [. A  /  x ]. ph
df-sbc 3029 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3124 class  [_ A  /  x ]_ B
df-csb 3125 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3194 class  ( A  \  B )
cun 3195 class  ( A  u.  B )
cin 3196 class  ( A  i^i  B )
wss 3197 wff 
A  C_  B
df-dif 3199 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3201 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3203 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3210 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
c0 3491 class  (/)
df-nul 3492 |-  (/)  =  ( _V  \  _V )
cif 3602 class  if ( ph ,  A ,  B )
df-if 3603 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 3649 class  ~P A
df-pw 3651 |-  ~P A  =  {
x  |  x  C_  A }
csn 3666 class  { A }
cpr 3667 class  { A ,  B }
ctp 3668 class  { A ,  B ,  C }
cop 3669 class  <. A ,  B >.
cotp 3670 class  <. A ,  B ,  C >.
df-sn 3672 |-  { A }  =  {
x  |  x  =  A }
df-pr 3673 |-  { A ,  B }  =  ( { A }  u.  { B } )
df-tp 3674 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
df-op 3675 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
df-ot 3676 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 3887 class  U. A
df-uni 3888 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 3922 class  |^| A
df-int 3923 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 3964 class  U_ x  e.  A  B
ciin 3965 class  |^|_
x  e.  A  B
df-iun 3966 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 3967 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4058 wff Disj  x  e.  A  B
df-disj 4059 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4082 wff 
A R B
df-br 4083 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4143 class  {
<. x ,  y >.  |  ph }
cmpt 4144 class  ( x  e.  A  |->  B )
df-opab 4145 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
df-mpt 4146 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4181 wff 
Tr  A
df-tr 4182 |-  ( Tr  A  <->  U. A  C_  A )
ax-coll 4198 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
ax-sep 4201 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4209 |- 
E. x A. y  -.  y  e.  x
ax-pow 4257 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
wem 4277 wff EXMID
df-exmid 4278 |-  (EXMID  <->  A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x ) )
ax-pr 4292 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cep 4375 class  _E
cid 4376 class  _I
df-eprel 4377 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
df-id 4381 |-  _I  =  { <. x ,  y >.  |  x  =  y }
wpo 4382 wff 
R  Po  A
wor 4383 wff 
R  Or  A
df-po 4384 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-iso 4385 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
wfrfor 4415 wff FrFor  R A S
wfr 4416 wff 
R  Fr  A
wse 4417 wff 
R Se  A
wwe 4418 wff 
R  We  A
df-frfor 4419 |-  (FrFor  R A S  <-> 
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S ) )
df-frind 4420 |-  ( R  Fr  A  <->  A. sFrFor  R A s )
df-se 4421 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-wetr 4422 |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) ) )
word 4450 wff 
Ord  A
con0 4451 class  On
wlim 4452 wff 
Lim  A
csuc 4453 class  suc 
A
df-iord 4454 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
df-on 4456 |-  On  =  { x  |  Ord  x }
df-ilim 4457 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
df-suc 4459 |- 
suc  A  =  ( A  u.  { A } )
ax-un 4521 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
ax-setind 4626 |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-iinf 4677 |- 
E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) )
com 4679 class  om
df-iom 4680 |- 
om  =  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
cxp 4714 class  ( A  X.  B )
ccnv 4715 class  `' A
cdm 4716 class  dom 
A
crn 4717 class  ran 
A
cres 4718 class  ( A  |`  B )
cima 4719 class  ( A " B )
ccom 4720 class  ( A  o.  B )
wrel 4721 wff 
Rel  A
df-xp 4722 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 4723 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 4724 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 4725 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 4726 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 4727 |-  ran  A  =  dom  `' A
df-res 4728 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 4729 |-  ( A " B
)  =  ran  ( A  |`  B )
cio 5272 class  ( iota x ph )
df-iota 5274 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5308 wff 
Fun  A
wfn 5309 wff 
A  Fn  B
wf 5310 wff 
F : A --> B
wf1 5311 wff 
F : A -1-1-> B
wfo 5312 wff 
F : A -onto-> B
wf1o 5313 wff 
F : A -1-1-onto-> B
cfv 5314 class  ( F `  A )
wiso 5315 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5316 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5317 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5318 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5319 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5320 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5321 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5322 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5323 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 5946 class  (
iota_ x  e.  A  ph )
df-riota 5947 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 5994 class  ( A F B )
coprab 5995 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpo 5996 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 5997 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 5998 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpo 5999 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6206 class  oF R
cofr 6207 class  oR R
df-of 6208 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6209 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
c1st 6274 class  1st
c2nd 6275 class  2nd
df-1st 6276 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 6277 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
ctpos 6380 class tpos  F
df-tpos 6381 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
wsmo 6421 wff 
Smo  A
df-smo 6422 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 6440 class recs ( F )
df-recs 6441 |- recs
( F )  = 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
crdg 6505 class  rec ( F ,  I
)
df-irdg 6506 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
cfrec 6526 class frec ( F ,  I )
df-frec 6527 |- frec
( F ,  I
)  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
c1o 6545 class  1o
c2o 6546 class  2o
c3o 6547 class  3o
c4o 6548 class  4o
coa 6549 class  +o
comu 6550 class  .o
coei 6551 classo
df-1o 6552 |-  1o  =  suc  (/)
df-2o 6553 |-  2o  =  suc  1o
df-3o 6554 |-  3o  =  suc  2o
df-4o 6555 |-  4o  =  suc  3o
df-oadd 6556 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 6557 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexpi 6558 |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `  y ) )
wer 6667 wff 
R  Er  A
cec 6668 class  [ A ] R
cqs 6669 class  ( A /. R )
df-er 6670 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 6672 |-  [ A ] R  =  ( R " { A } )
df-qs 6676 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 6785 class  ^m
cpm 6786 class  ^pm
df-map 6787 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 6788 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 6835 class  X_ x  e.  A  B
df-ixp 6836 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 6875 class  ~~
cdom 6876 class  ~<_
cfn 6877 class  Fin
df-en 6878 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 6879 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-fin 6880 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfi 7123 class  fi
df-fi 7124 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 7137 class  sup ( A ,  B ,  R )
cinf 7138 class inf ( A ,  B ,  R )
df-sup 7139 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 7140 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
cdju 7192 class  ( A B )
df-dju 7193 |-  ( A B )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )
cinl 7200 class inl
cinr 7201 class inr
df-inl 7202 |- inl 
=  ( x  e. 
_V  |->  <. (/) ,  x >. )
df-inr 7203 |- inr 
=  ( x  e. 
_V  |->  <. 1o ,  x >. )
cdjucase 7238 class case ( R ,  S )
df-case 7239 |- case
( R ,  S
)  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
cdjud 7257 class  ( R ⊔d  S )
df-djud 7258 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
xnninf 7274 class
df-nninf 7275 |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
comni 7289 class Omni
df-omni 7290 |- Omni 
=  { y  | 
A. f ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) ) }
cmarkov 7306 class Markov
df-markov 7307 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
cwomni 7318 class WOmni
df-womni 7319 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
ccrd 7337 class  card
wacn 7338 class AC  A
df-card 7339 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
df-acnm 7340 |- AC  A  =  { x  |  ( A  e. 
_V  /\  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) }
wac 7375 wff CHOICE
df-ac 7376 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
wap 7421 wff 
R Ap  A
df-pap 7422 |-  ( R Ap  A  <->  ( ( R  C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  y R z ) ) ) ) )
wtap 7423 wff 
R TAp  A
df-tap 7424 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) ) )
wacc 7436 wff CCHOICE
df-cc 7437 |-  (CCHOICE  <->  A. x ( dom  x  ~~  om  ->  E. f
( f  C_  x  /\  f  Fn  dom  x ) ) )
cnpi 7447 class  N.
cpli 7448 class  +N
cmi 7449 class  .N
clti 7450 class  <N
cplpq 7451 class  +pQ
cmpq 7452 class  .pQ
cltpq 7453 class  <pQ
ceq 7454 class  ~Q
cnq 7455 class  Q.
c1q 7456 class  1Q
cplq 7457 class  +Q
cmq 7458 class  .Q
crq 7459 class  *Q
cltq 7460 class  <Q
ceq0 7461 class ~Q0
cnq0 7462 class Q0
c0q0 7463 class 0Q0
cplq0 7464 class +Q0
cmq0 7465 class ·Q0
cnp 7466 class  P.
c1p 7467 class  1P
cpp 7468 class  +P.
cmp 7469 class  .P.
cltp 7470 class  <P
cer 7471 class  ~R
cnr 7472 class  R.
c0r 7473 class  0R
c1r 7474 class  1R
cm1r 7475 class  -1R
cplr 7476 class  +R
cmr 7477 class  .R
cltr 7478 class  <R
df-ni 7479 |-  N.  =  ( om  \  { (/) } )
df-pli 7480 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 7481 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 7482 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 7519 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 7520 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 7521 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 7522 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nqqs 7523 |- 
Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
df-plqqs 7524 |- 
+Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-mqqs 7525 |- 
.Q  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
df-1nqqs 7526 |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
df-rq 7527 |-  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
df-ltnqqs 7528 |- 
<Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
df-enq0 7599 |- ~Q0  =  { <. x ,  y
>.  |  ( (
x  e.  ( om 
X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
df-nq0 7600 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
df-0nq0 7601 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
df-plq0 7602 |- +Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
v  .o  u ) ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-mq0 7603 |- ·Q0  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
df-inp 7641 |- 
P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
df-i1p 7642 |-  1P  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
df-iplp 7643 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  +Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
df-imp 7644 |- 
.P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
df-iltp 7645 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
df-enr 7901 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 7902 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 7903 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 7904 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 7905 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 7906 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 7907 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 7908 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 7985 class  CC
cr 7986 class  RR
cc0 7987 class  0
c1 7988 class  1
ci 7989 class  _i
caddc 7990 class  +
cltrr 7991 class  <RR
cmul 7992 class  x.
df-c 7993 |-  CC  =  ( R.  X.  R. )
df-0 7994 |-  0  =  <. 0R ,  0R >.
df-1 7995 |-  1  =  <. 1R ,  0R >.
df-i 7996 |-  _i  =  <. 0R ,  1R >.
df-r 7997 |-  RR  =  ( R.  X.  { 0R } )
df-add 7998 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 7999 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 8000 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 8078 |-  CC  e.  _V
ax-resscn 8079 |-  RR  C_  CC
ax-1cn 8080 |-  1  e.  CC
ax-1re 8081 |-  1  e.  RR
ax-icn 8082 |-  _i  e.  CC
ax-addcl 8083 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 8084 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 8085 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 8086 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-addcom 8087 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A ) )
ax-mulcom 8088 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 8089 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 8090 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 8091 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 8092 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-0lt1 8093 |-  0  <RR  1
ax-1rid 8094 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-0id 8095 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
ax-rnegex 8096 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-precex 8097 |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 ) )
ax-cnre 8098 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-ltirr 8099 |-  ( A  e.  RR  ->  -.  A  <RR  A )
ax-pre-ltwlin 8100 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
ax-pre-lttrn 8101 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-apti 8102 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
ax-pre-ltadd 8103 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 8104 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-mulext 8105 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
ax-arch 8106 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
ax-caucvg 8107 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
ax-pre-suploc 8108 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 8109 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 8110 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 8166 class +oo
cmnf 8167 class -oo
cxr 8168 class  RR*
clt 8169 class  <
cle 8170 class  <_
df-pnf 8171 |- +oo  =  ~P U. CC
df-mnf 8172 |- -oo  =  ~P +oo
df-xr 8173 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 8174 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 8175 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 8305 class  -
cneg 8306 class  -u A
df-sub 8307 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 8308 |-  -u A  =  (
0  -  A )
creap 8709 class #
df-reap 8710 |- #  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
cap 8716 class #
df-ap 8717 |- #  =  { <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
cdiv 8807 class  /
df-div 8808 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 9098 class  NN
df-inn 9099 |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
c2 9149 class  2
c3 9150 class  3
c4 9151 class  4
c5 9152 class  5
c6 9153 class  6
c7 9154 class  7
c8 9155 class  8
c9 9156 class  9
df-2 9157 |-  2  =  ( 1  +  1 )
df-3 9158 |-  3  =  ( 2  +  1 )
df-4 9159 |-  4  =  ( 3  +  1 )
df-5 9160 |-  5  =  ( 4  +  1 )
df-6 9161 |-  6  =  ( 5  +  1 )
df-7 9162 |-  7  =  ( 6  +  1 )
df-8 9163 |-  8  =  ( 7  +  1 )
df-9 9164 |-  9  =  ( 8  +  1 )
cn0 9357 class  NN0
df-n0 9358 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 9420 class NN0*
df-xnn0 9421 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 9434 class  ZZ
df-z 9435 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 9566 class ; A B
df-dec 9567 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 9710 class  ZZ>=
df-uz 9711 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 9802 class  QQ
df-q 9803 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 9837 class  RR+
df-rp 9838 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 9953 class  -e A
cxad 9954 class  +e
cxmu 9955 class  xe
df-xneg 9956 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 9957 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 9958 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 10072 class  (,)
cioc 10073 class  (,]
cico 10074 class  [,)
cicc 10075 class  [,]
df-ioo 10076 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 10077 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 10078 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 10079 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 10192 class  ...
df-fz 10193 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 10326 class ..^
df-fzo 10327 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 10475 class  |_
cceil 10476 class
df-fl 10477 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 10478 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 10531 class  mod
df-mod 10532 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 10656 class  seq M (  .+  ,  F )
df-seqfrec 10657 |- 
seq M (  .+  ,  F )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
cexp 10747 class  ^
df-exp 10748 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 10934 class  !
df-fac 10935 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 10956 class  _C
df-bc 10957 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 10984 class
df-ihash 10985 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
cword 11058 class Word  S
df-word 11059 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
clsw 11102 class lastS
df-lsw 11103 |- lastS  =  ( w  e. 
_V  |->  ( w `  ( ( `  w )  -  1 ) ) )
cconcat 11111 class ++
df-concat 11112 |- ++ 
=  ( s  e. 
_V ,  t  e. 
_V  |->  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( `  s ) ) ) ) ) )
cs1 11134 class  <" A ">
df-s1 11135 |-  <" A ">  =  { <. 0 ,  (  _I  `  A )
>. }
csubstr 11163 class substr
df-substr 11164 |- substr  =  ( s  e. 
_V ,  b  e.  ( ZZ  X.  ZZ )  |->  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) ) )
cpfx 11190 class prefix
df-pfx 11191 |- prefix  =  ( s  e. 
_V ,  l  e. 
NN0  |->  ( s substr  <. 0 ,  l >. ) )
cs2 11267 class  <" A B ">
cs3 11268 class  <" A B C ">
cs4 11269 class  <" A B C D ">
cs5 11270 class  <" A B C D E ">
cs6 11271 class  <" A B C D E F ">
cs7 11272 class  <" A B C D E F G ">
cs8 11273 class  <" A B C D E F G H ">
df-s2 11274 |-  <" A B ">  =  ( <" A "> ++  <" B "> )
df-s3 11275 |-  <" A B C ">  =  (
<" A B "> ++  <" C "> )
df-s4 11276 |-  <" A B C D ">  =  ( <" A B C "> ++  <" D "> )
df-s5 11277 |-  <" A B C D E ">  =  ( <" A B C D "> ++  <" E "> )
df-s6 11278 |-  <" A B C D E F ">  =  ( <" A B C D E "> ++  <" F "> )
df-s7 11279 |-  <" A B C D E F G ">  =  (
<" A B C D E F "> ++  <" G "> )
df-s8 11280 |-  <" A B C D E F G H ">  =  ( <" A B C D E F G "> ++  <" H "> )
cshi 11311 class  shift
df-shft 11312 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
ccj 11336 class  *
cre 11337 class  Re
cim 11338 class  Im
df-cj 11339 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 11340 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 11341 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 11493 class  sqr
cabs 11494 class  abs
df-rsqrt 11495 |- 
sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
df-abs 11496 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
cli 11775 class  ~~>
df-clim 11776 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
csu 11850 class  sum_ k  e.  A  B
df-sumdc 11851 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
cprod 12047 class  prod_
k  e.  A  B
df-proddc 12048 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
ce 12139 class  exp
ceu 12140 class  _e
csin 12141 class  sin
ccos 12142 class  cos
ctan 12143 class  tan
cpi 12144 class  pi
df-ef 12145 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 12146 |-  _e  =  ( exp `  1 )
df-sin 12147 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 12148 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 12149 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 12150 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
ctau 12272 class  tau
df-tau 12273 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cdvds 12284 class  ||
df-dvds 12285 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cbits 12437 class bits
df-bits 12438 |- bits 
=  ( n  e.  ZZ  |->  { m  e. 
NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) } )
cgcd 12460 class  gcd
df-gcd 12461 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 12568 class lcm
df-lcm 12569 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
cprime 12615 class  Prime
df-prm 12616 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 12689 class numer
cdenom 12690 class denom
df-numer 12691 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 12692 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 12716 class  odZ
cphi 12717 class  phi
df-odz 12718 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 12719 |- 
phi  =  ( n  e.  NN  |->  ( `  {
x  e.  ( 1 ... n )  |  ( x  gcd  n
)  =  1 } ) )
cpc 12793 class  pCnt
df-pc 12794 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 12878 class  ZZ[_i]
df-gz 12879 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cstr 13014 class Struct
cnx 13015 class  ndx
csts 13016 class sSet
cslot 13017 class Slot  A
cbs 13018 class  Base
cress 13019 classs
df-struct 13020 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 13021 |- 
ndx  =  (  _I  |`  NN )
df-slot 13022 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 13024 |- 
Base  = Slot  1
df-sets 13025 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-iress 13026 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) ) >.
) )
cplusg 13096 class  +g
cmulr 13097 class  .r
cstv 13098 class  *r
csca 13099 class Scalar
cvsca 13100 class  .s
cip 13101 class  .i
cts 13102 class TopSet
cple 13103 class  le
coc 13104 class  oc
cds 13105 class  dist
cunif 13106 class  UnifSet
chom 13107 class  Hom
cco 13108 class comp
df-plusg 13109 |- 
+g  = Slot  2
df-mulr 13110 |- 
.r  = Slot  3
df-starv 13111 |-  *r  = Slot  4
df-sca 13112 |- Scalar  = Slot  5
df-vsca 13113 |-  .s  = Slot  6
df-ip 13114 |-  .i  = Slot  8
df-tset 13115 |- TopSet  = Slot  9
df-ple 13116 |- 
le  = Slot ; 1 0
df-ocomp 13117 |-  oc  = Slot ; 1 1
df-ds 13118 |-  dist 
= Slot ; 1 2
df-unif 13119 |- 
UnifSet  = Slot ; 1 3
df-hom 13120 |- 
Hom  = Slot ; 1 4
df-cco 13121 |- comp 
= Slot ; 1 5
crest 13258 classt
ctopn 13259 class  TopOpen
df-rest 13260 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 13261 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 13273 class  topGen
cpt 13274 class  Xt_
c0g 13275 class  0g
cgsu 13276 class  gsumg
df-0g 13277 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-igsum 13278 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  ( iota x
( ( dom  f  =  (/)  /\  x  =  ( 0g `  w
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  f  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ) )
df-topgen 13279 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 13280 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 13284 class  X_s
cpws 13285 class  ^s
df-prds 13286 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 13309 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cimas 13318 class  "s
cqus 13319 class  /.s
cxps 13320 class  X.s
df-iimas 13321 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
df-qus 13322 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 13323 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
cplusf 13372 class  +f
cmgm 13373 class Mgm
df-plusf 13374 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 13375 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 13420 class Smgrp
df-sgrp 13421 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 13435 class  Mnd
df-mnd 13436 |- 
Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. x  e.  b 
( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 13476 class MndHom
csubmnd 13477 class SubMnd
df-mhm 13478 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 13479 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cgrp 13519 class  Grp
cminusg 13520 class  invg
csg 13521 class  -g
df-grp 13522 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 13523 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 13524 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 13642 class .g
df-mulg 13643 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 13690 class SubGrp
cnsg 13691 class NrmSGrp
cqg 13692 class ~QG
df-subg 13693 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 13694 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 13695 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 13763 class  GrpHom
df-ghm 13764 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
ccmn 13807 class CMnd
cabl 13808 class  Abel
df-cmn 13809 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 13810 |- 
Abel  =  ( Grp  i^i CMnd
)
cmgp 13869 class mulGrp
df-mgp 13870 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
crng 13881 class Rng
df-rng 13882 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  / 
b ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
cur 13908 class  1r
df-ur 13909 |-  1r  =  ( 0g  o. mulGrp )
csrg 13912 class SRing
df-srg 13913 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 13945 class  Ring
ccrg 13946 class  CRing
df-ring 13947 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 13948 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 14016 class oppr
df-oppr 14017 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 14035 class  ||r
cui 14036 class Unit
cir 14037 class Irred
df-dvdsr 14038 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 14039 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 14040 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 14069 class  invr
df-invr 14070 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 14080 class /r
df-dvr 14081 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 14099 class RingHom
crs 14100 class RingIso
df-rhm 14101 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rim 14102 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
cnzr 14128 class NzRing
df-nzr 14129 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
clring 14139 class LRing
df-lring 14140 |- LRing  =  { r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
csubrng 14146 class SubRng
df-subrng 14147 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng } )
csubrg 14166 class SubRing
crgspn 14167 class RingSpan
df-subrg 14168 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 14169 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
crlreg 14204 class RLReg
cdomn 14205 class Domn
cidom 14206 class IDomn
df-rlreg 14207 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 14208 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 14209 |- IDomn  =  ( CRing  i^i Domn )
capr 14229 class #r
df-apr 14230 |- #r  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
) } )
clmod 14236 class  LMod
cscaf 14237 class  .sf
df-lmod 14238 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 14239 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 14301 class  LSubSp
df-lssm 14302 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) } )
clspn 14335 class  LSpan
df-lsp 14336 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
csra 14382 class subringAlg
crglmod 14383 class ringLMod
df-sra 14384 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 14385 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
clidl 14416 class LIdeal
crsp 14417 class RSpan
df-lidl 14418 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 14419 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 14448 class 2Ideal
df-2idl 14449 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
cpsmet 14484 class PsMet
cxmet 14485 class  *Met
cmet 14486 class  Met
cbl 14487 class  ball
cfbas 14488 class  fBas
cfg 14489 class  filGen
cmopn 14490 class  MetOpen
cmetu 14491 class metUnif
df-psmet 14492 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 14493 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 14494 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 14495 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 14496 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 14497 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 14498 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 14499 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 14505 classfld
df-cnfld 14506 |-fld  =  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
czring 14539 classring
df-zring 14540 |-ring  =  (flds  ZZ )
czrh 14560 class  ZRHom
czlm 14561 class  ZMod
czn 14562 class ℤ/n
df-zrh 14563 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 14564 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-zn 14565 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
cmps 14610 class mPwSer
cmpl 14611 class mPoly
df-psr 14612 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
df-mplcoe 14613 |- mPoly  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ ( i mPwSer  r
)  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
ctop 14656 class  Top
df-top 14657 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 14669 class TopOn
df-topon 14670 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 14689 class  TopSp
df-topsp 14690 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 14701 class  TopBases
df-bases 14702 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 14751 class  Clsd
cnt 14752 class  int
ccl 14753 class  cls
df-cld 14754 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 14755 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 14756 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 14797 class  nei
df-nei 14798 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
ccn 14844 class  Cn
ccnp 14845 class  CnP
clm 14846 class  ~~> t
df-cn 14847 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 14848 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 14849 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ctx 14911 class  tX
df-tx 14912 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
chmeo 14959 class  Homeo
df-hmeo 14960 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
cxms 14995 class  *MetSp
cms 14996 class  MetSp
ctms 14997 class toMetSp
df-xms 14998 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 14999 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 15000 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
ccncf 15229 class  -cn->
df-cncf 15230 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
climc 15313 class lim CC
cdv 15314 class  _D
df-limced 15315 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
df-dvap 15316 |- 
_D  =  ( s  e.  ~P CC , 
f  e.  ( CC 
^pm  s )  |->  U_ x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t  s ) ) `  dom  f ) ( { x }  X.  (
( z  e.  {
w  e.  dom  f  |  w #  x }  |->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
cply 15387 class Poly
cidp 15388 class  Xp
df-ply 15389 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 15390 |-  Xp  =  (  _I  |`  CC )
clog 15515 class  log
ccxp 15516 class  ^c
df-relog 15517 |- 
log  =  `' ( exp  |`  RR )
df-rpcxp 15518 |- 
^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  ( y  x.  ( log `  x ) ) ) )
clogb 15602 class logb
df-logb 15603 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
csgm 15640 class  sigma
df-sgm 15641 |- 
sigma  =  ( x  e.  CC ,  n  e.  NN  |->  sum_ k  e.  {
p  e.  NN  |  p  ||  n }  (
k  ^c  x ) )
clgs 15661 class  /L
df-lgs 15662 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
cedgf 15790 class .ef
df-edgf 15791 |- .ef 
= Slot ; 1 8
cvtx 15798 class Vtx
ciedg 15799 class iEdg
df-vtx 15800 |- Vtx 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g ) ,  (
Base `  g )
) )
df-iedg 15801 |- iEdg 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 2nd `  g ) ,  (.ef
`  g ) ) )
cedg 15843 class Edg
df-edg 15844 |- Edg 
=  ( g  e. 
_V  |->  ran  (iEdg `  g
) )
cuhgr 15852 class UHGraph
cushgr 15853 class USHGraph
df-uhgrm 15854 |- UHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { s  e.  ~P v  |  E. j 
j  e.  s } }
df-ushgrm 15855 |- USHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { s  e.  ~P v  |  E. j 
j  e.  s } }
cupgr 15876 class UPGraph
cumgr 15877 class UMGraph
df-upgren 15878 |- UPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
df-umgren 15879 |- UMGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
cuspgr 15936 class USPGraph
cusgr 15937 class USGraph
df-uspgren 15938 |- USPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
df-usgren 15939 |- USGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  x  ~~  2o } }
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 16087 wff 
A DECIDin  B
df-dcin 16088 |-  ( A DECIDin  B 
<-> 
A. x  e.  B DECID  x  e.  A )
wbd 16105 wff BOUNDED  ph
ax-bd0 16106 |-  ( ph  <->  ps )   =>    |-  (BOUNDED  ph  -> BOUNDED  ps )
ax-bdim 16107 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  ->  ps )
ax-bdan 16108 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  /\  ps )
ax-bdor 16109 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/  ps )
ax-bdn 16110 |- BOUNDED  ph   =>    |- BOUNDED  -.  ph
ax-bdal 16111 |- BOUNDED  ph   =>    |- BOUNDED  A. x  e.  y 
ph
ax-bdex 16112 |- BOUNDED  ph   =>    |- BOUNDED  E. x  e.  y 
ph
ax-bdeq 16113 |- BOUNDED  x  =  y
ax-bdel 16114 |- BOUNDED  x  e.  y
ax-bdsb 16115 |- BOUNDED  ph   =>    |- BOUNDED  [ y  /  x ] ph
wbdc 16133 wff BOUNDED  A
df-bdc 16134 |-  (BOUNDED  A 
<-> 
A. xBOUNDED  x  e.  A )
ax-bdsep 16177 |- BOUNDED  ph   =>    |-  A. a E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
ax-bj-d0cl 16217 |- BOUNDED  ph   =>    |- DECID  ph
wind 16219 wff Ind  A
df-bj-ind 16220 |-  (Ind  A  <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
ax-infvn 16234 |- 
E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) )
ax-bdsetind 16261 |- BOUNDED  ph   =>    |-  ( A. a ( A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
ax-inf2 16269 |- 
E. a A. x
( x  e.  a  <-> 
( x  =  (/)  \/ 
E. y  e.  a  x  =  suc  y
) )
ax-strcoll 16275 |- 
A. a ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
ax-sscoll 16280 |- 
A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
ax-ddkcomp 16282 |-  ( ( ( A 
C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
walsi 16375 wff  A.! x ( ph  ->  ps )
walsc 16376 wff  A.! x  e.  A ph
df-alsi 16377 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 16378 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator