ILE Home Intuitionistic Logic Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff Β¬ πœ‘
wi 4wff (πœ‘ β†’ πœ“)
ax-mp 5πœ‘    &   (πœ‘ β†’ πœ“)    β‡’   πœ“
ax-1 6(πœ‘ β†’ (πœ“ β†’ πœ‘))
ax-2 7((πœ‘ β†’ (πœ“ β†’ πœ’)) β†’ ((πœ‘ β†’ πœ“) β†’ (πœ‘ β†’ πœ’)))
wa 104wff (πœ‘ ∧ πœ“)
wb 105wff (πœ‘ ↔ πœ“)
ax-ia1 106((πœ‘ ∧ πœ“) β†’ πœ‘)
ax-ia2 107((πœ‘ ∧ πœ“) β†’ πœ“)
ax-ia3 108(πœ‘ β†’ (πœ“ β†’ (πœ‘ ∧ πœ“)))
df-bi 117(((πœ‘ ↔ πœ“) β†’ ((πœ‘ β†’ πœ“) ∧ (πœ“ β†’ πœ‘))) ∧ (((πœ‘ β†’ πœ“) ∧ (πœ“ β†’ πœ‘)) β†’ (πœ‘ ↔ πœ“)))
ax-in1 614((πœ‘ β†’ Β¬ πœ‘) β†’ Β¬ πœ‘)
ax-in2 615(Β¬ πœ‘ β†’ (πœ‘ β†’ πœ“))
wo 708wff (πœ‘ ∨ πœ“)
ax-io 709(((πœ‘ ∨ πœ’) β†’ πœ“) ↔ ((πœ‘ β†’ πœ“) ∧ (πœ’ β†’ πœ“)))
wstab 830wff STAB πœ‘
df-stab 831(STAB πœ‘ ↔ (Β¬ Β¬ πœ‘ β†’ πœ‘))
wdc 834wff DECID πœ‘
df-dc 835(DECID πœ‘ ↔ (πœ‘ ∨ Β¬ πœ‘))
w3o 977wff (πœ‘ ∨ πœ“ ∨ πœ’)
w3a 978wff (πœ‘ ∧ πœ“ ∧ πœ’)
df-3or 979((πœ‘ ∨ πœ“ ∨ πœ’) ↔ ((πœ‘ ∨ πœ“) ∨ πœ’))
df-3an 980((πœ‘ ∧ πœ“ ∧ πœ’) ↔ ((πœ‘ ∧ πœ“) ∧ πœ’))
wal 1351wff βˆ€π‘₯πœ‘
cv 1352class π‘₯
wceq 1353wff 𝐴 = 𝐡
wtru 1354wff ⊀
df-tru 1356(⊀ ↔ (βˆ€π‘₯ π‘₯ = π‘₯ β†’ βˆ€π‘₯ π‘₯ = π‘₯))
wfal 1358wff βŠ₯
df-fal 1359(βŠ₯ ↔ Β¬ ⊀)
wxo 1375wff (πœ‘ ⊻ πœ“)
df-xor 1376((πœ‘ ⊻ πœ“) ↔ ((πœ‘ ∨ πœ“) ∧ Β¬ (πœ‘ ∧ πœ“)))
ax-5 1447(βˆ€π‘₯(πœ‘ β†’ πœ“) β†’ (βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯πœ“))
ax-7 1448(βˆ€π‘₯βˆ€π‘¦πœ‘ β†’ βˆ€π‘¦βˆ€π‘₯πœ‘)
ax-gen 1449πœ‘    β‡’   βˆ€π‘₯πœ‘
wnf 1460wff β„²π‘₯πœ‘
df-nf 1461(β„²π‘₯πœ‘ ↔ βˆ€π‘₯(πœ‘ β†’ βˆ€π‘₯πœ‘))
wex 1492wff βˆƒπ‘₯πœ‘
ax-ie1 1493(βˆƒπ‘₯πœ‘ β†’ βˆ€π‘₯βˆƒπ‘₯πœ‘)
ax-ie2 1494(βˆ€π‘₯(πœ“ β†’ βˆ€π‘₯πœ“) β†’ (βˆ€π‘₯(πœ‘ β†’ πœ“) ↔ (βˆƒπ‘₯πœ‘ β†’ πœ“)))
ax-8 1504(π‘₯ = 𝑦 β†’ (π‘₯ = 𝑧 β†’ 𝑦 = 𝑧))
ax-10 1505(βˆ€π‘₯ π‘₯ = 𝑦 β†’ βˆ€π‘¦ 𝑦 = π‘₯)
ax-11 1506(π‘₯ = 𝑦 β†’ (βˆ€π‘¦πœ‘ β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘)))
ax-i12 1507(βˆ€π‘§ 𝑧 = π‘₯ ∨ (βˆ€π‘§ 𝑧 = 𝑦 ∨ βˆ€π‘§(π‘₯ = 𝑦 β†’ βˆ€π‘§ π‘₯ = 𝑦)))
ax-bndl 1509(βˆ€π‘§ 𝑧 = π‘₯ ∨ (βˆ€π‘§ 𝑧 = 𝑦 ∨ βˆ€π‘₯βˆ€π‘§(π‘₯ = 𝑦 β†’ βˆ€π‘§ π‘₯ = 𝑦)))
ax-4 1510(βˆ€π‘₯πœ‘ β†’ πœ‘)
ax-17 1526(πœ‘ β†’ βˆ€π‘₯πœ‘)
ax-i9 1530βˆƒπ‘₯ π‘₯ = 𝑦
ax-ial 1534(βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯βˆ€π‘₯πœ‘)
ax-i5r 1535((βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯πœ“) β†’ βˆ€π‘₯(βˆ€π‘₯πœ‘ β†’ πœ“))
ax-10o 1716(βˆ€π‘₯ π‘₯ = 𝑦 β†’ (βˆ€π‘₯πœ‘ β†’ βˆ€π‘¦πœ‘))
wsb 1762wff [𝑦 / π‘₯]πœ‘
df-sb 1763([𝑦 / π‘₯]πœ‘ ↔ ((π‘₯ = 𝑦 β†’ πœ‘) ∧ βˆƒπ‘₯(π‘₯ = 𝑦 ∧ πœ‘)))
ax-16 1814(βˆ€π‘₯ π‘₯ = 𝑦 β†’ (πœ‘ β†’ βˆ€π‘₯πœ‘))
ax-11o 1823(Β¬ βˆ€π‘₯ π‘₯ = 𝑦 β†’ (π‘₯ = 𝑦 β†’ (πœ‘ β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘))))
weu 2026wff βˆƒ!π‘₯πœ‘
wmo 2027wff βˆƒ*π‘₯πœ‘
df-eu 2029(βˆƒ!π‘₯πœ‘ ↔ βˆƒπ‘¦βˆ€π‘₯(πœ‘ ↔ π‘₯ = 𝑦))
df-mo 2030(βˆƒ*π‘₯πœ‘ ↔ (βˆƒπ‘₯πœ‘ β†’ βˆƒ!π‘₯πœ‘))
wcel 2148wff 𝐴 ∈ 𝐡
ax-13 2150(π‘₯ = 𝑦 β†’ (π‘₯ ∈ 𝑧 β†’ 𝑦 ∈ 𝑧))
ax-14 2151(π‘₯ = 𝑦 β†’ (𝑧 ∈ π‘₯ β†’ 𝑧 ∈ 𝑦))
ax-ext 2159(βˆ€π‘§(𝑧 ∈ π‘₯ ↔ 𝑧 ∈ 𝑦) β†’ π‘₯ = 𝑦)
cab 2163class {π‘₯ ∣ πœ‘}
df-clab 2164(π‘₯ ∈ {𝑦 ∣ πœ‘} ↔ [π‘₯ / 𝑦]πœ‘)
df-cleq 2170(βˆ€π‘₯(π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ 𝑧) β†’ 𝑦 = 𝑧)    β‡’   (𝐴 = 𝐡 ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ π‘₯ ∈ 𝐡))
df-clel 2173(𝐴 ∈ 𝐡 ↔ βˆƒπ‘₯(π‘₯ = 𝐴 ∧ π‘₯ ∈ 𝐡))
wnfc 2306wff β„²π‘₯𝐴
df-nfc 2308(β„²π‘₯𝐴 ↔ βˆ€π‘¦β„²π‘₯ 𝑦 ∈ 𝐴)
wne 2347wff 𝐴 β‰  𝐡
df-ne 2348(𝐴 β‰  𝐡 ↔ Β¬ 𝐴 = 𝐡)
wnel 2442wff 𝐴 βˆ‰ 𝐡
df-nel 2443(𝐴 βˆ‰ 𝐡 ↔ Β¬ 𝐴 ∈ 𝐡)
wral 2455wff βˆ€π‘₯ ∈ 𝐴 πœ‘
wrex 2456wff βˆƒπ‘₯ ∈ 𝐴 πœ‘
wreu 2457wff βˆƒ!π‘₯ ∈ 𝐴 πœ‘
wrmo 2458wff βˆƒ*π‘₯ ∈ 𝐴 πœ‘
crab 2459class {π‘₯ ∈ 𝐴 ∣ πœ‘}
df-ral 2460(βˆ€π‘₯ ∈ 𝐴 πœ‘ ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 β†’ πœ‘))
df-rex 2461(βˆƒπ‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
df-reu 2462(βˆƒ!π‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒ!π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
df-rmo 2463(βˆƒ*π‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒ*π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
df-rab 2464{π‘₯ ∈ 𝐴 ∣ πœ‘} = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ πœ‘)}
cvv 2739class V
df-v 2741V = {π‘₯ ∣ π‘₯ = π‘₯}
wcdeq 2947wff CondEq(π‘₯ = 𝑦 β†’ πœ‘)
df-cdeq 2948(CondEq(π‘₯ = 𝑦 β†’ πœ‘) ↔ (π‘₯ = 𝑦 β†’ πœ‘))
wsbc 2964wff [𝐴 / π‘₯]πœ‘
df-sbc 2965([𝐴 / π‘₯]πœ‘ ↔ 𝐴 ∈ {π‘₯ ∣ πœ‘})
csb 3059class ⦋𝐴 / π‘₯⦌𝐡
df-csb 3060⦋𝐴 / π‘₯⦌𝐡 = {𝑦 ∣ [𝐴 / π‘₯]𝑦 ∈ 𝐡}
cdif 3128class (𝐴 βˆ– 𝐡)
cun 3129class (𝐴 βˆͺ 𝐡)
cin 3130class (𝐴 ∩ 𝐡)
wss 3131wff 𝐴 βŠ† 𝐡
df-dif 3133(𝐴 βˆ– 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ Β¬ π‘₯ ∈ 𝐡)}
df-un 3135(𝐴 βˆͺ 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡)}
df-in 3137(𝐴 ∩ 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ π‘₯ ∈ 𝐡)}
df-ss 3144(𝐴 βŠ† 𝐡 ↔ (𝐴 ∩ 𝐡) = 𝐴)
c0 3424class βˆ…
df-nul 3425βˆ… = (V βˆ– V)
cif 3536class if(πœ‘, 𝐴, 𝐡)
df-if 3537if(πœ‘, 𝐴, 𝐡) = {π‘₯ ∣ ((π‘₯ ∈ 𝐴 ∧ πœ‘) ∨ (π‘₯ ∈ 𝐡 ∧ Β¬ πœ‘))}
cpw 3577class 𝒫 𝐴
df-pw 3579𝒫 𝐴 = {π‘₯ ∣ π‘₯ βŠ† 𝐴}
csn 3594class {𝐴}
cpr 3595class {𝐴, 𝐡}
ctp 3596class {𝐴, 𝐡, 𝐢}
cop 3597class ⟨𝐴, 𝐡⟩
cotp 3598class ⟨𝐴, 𝐡, 𝐢⟩
df-sn 3600{𝐴} = {π‘₯ ∣ π‘₯ = 𝐴}
df-pr 3601{𝐴, 𝐡} = ({𝐴} βˆͺ {𝐡})
df-tp 3602{𝐴, 𝐡, 𝐢} = ({𝐴, 𝐡} βˆͺ {𝐢})
df-op 3603⟨𝐴, 𝐡⟩ = {π‘₯ ∣ (𝐴 ∈ V ∧ 𝐡 ∈ V ∧ π‘₯ ∈ {{𝐴}, {𝐴, 𝐡}})}
df-ot 3604⟨𝐴, 𝐡, 𝐢⟩ = ⟨⟨𝐴, 𝐡⟩, 𝐢⟩
cuni 3811class βˆͺ 𝐴
df-uni 3812βˆͺ 𝐴 = {π‘₯ ∣ βˆƒπ‘¦(π‘₯ ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)}
cint 3846class ∩ 𝐴
df-int 3847∩ 𝐴 = {π‘₯ ∣ βˆ€π‘¦(𝑦 ∈ 𝐴 β†’ π‘₯ ∈ 𝑦)}
ciun 3888class βˆͺ π‘₯ ∈ 𝐴 𝐡
ciin 3889class ∩ π‘₯ ∈ 𝐴 𝐡
df-iun 3890βˆͺ π‘₯ ∈ 𝐴 𝐡 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 ∈ 𝐡}
df-iin 3891∩ π‘₯ ∈ 𝐴 𝐡 = {𝑦 ∣ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ 𝐡}
wdisj 3982wff Disj π‘₯ ∈ 𝐴 𝐡
df-disj 3983(Disj π‘₯ ∈ 𝐴 𝐡 ↔ βˆ€π‘¦βˆƒ*π‘₯ ∈ 𝐴 𝑦 ∈ 𝐡)
wbr 4005wff 𝐴𝑅𝐡
df-br 4006(𝐴𝑅𝐡 ↔ ⟨𝐴, 𝐡⟩ ∈ 𝑅)
copab 4065class {⟨π‘₯, π‘¦βŸ© ∣ πœ‘}
cmpt 4066class (π‘₯ ∈ 𝐴 ↦ 𝐡)
df-opab 4067{⟨π‘₯, π‘¦βŸ© ∣ πœ‘} = {𝑧 ∣ βˆƒπ‘₯βˆƒπ‘¦(𝑧 = ⟨π‘₯, π‘¦βŸ© ∧ πœ‘)}
df-mpt 4068(π‘₯ ∈ 𝐴 ↦ 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 = 𝐡)}
wtr 4103wff Tr 𝐴
df-tr 4104(Tr 𝐴 ↔ βˆͺ 𝐴 βŠ† 𝐴)
ax-coll 4120β„²π‘πœ‘    β‡’   (βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦πœ‘ β†’ βˆƒπ‘βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 πœ‘)
ax-sep 4123βˆƒπ‘¦βˆ€π‘₯(π‘₯ ∈ 𝑦 ↔ (π‘₯ ∈ 𝑧 ∧ πœ‘))
ax-nul 4131βˆƒπ‘₯βˆ€π‘¦ Β¬ 𝑦 ∈ π‘₯
ax-pow 4176βˆƒπ‘¦βˆ€π‘§(βˆ€π‘€(𝑀 ∈ 𝑧 β†’ 𝑀 ∈ π‘₯) β†’ 𝑧 ∈ 𝑦)
wem 4196wff EXMID
df-exmid 4197(EXMID ↔ βˆ€π‘₯(π‘₯ βŠ† {βˆ…} β†’ DECID βˆ… ∈ π‘₯))
ax-pr 4211βˆƒπ‘§βˆ€π‘€((𝑀 = π‘₯ ∨ 𝑀 = 𝑦) β†’ 𝑀 ∈ 𝑧)
cep 4289class E
cid 4290class I
df-eprel 4291 E = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ ∈ 𝑦}
df-id 4295 I = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ = 𝑦}
wpo 4296wff 𝑅 Po 𝐴
wor 4297wff 𝑅 Or 𝐴
df-po 4298(𝑅 Po 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐴 (Β¬ π‘₯𝑅π‘₯ ∧ ((π‘₯𝑅𝑦 ∧ 𝑦𝑅𝑧) β†’ π‘₯𝑅𝑧)))
df-iso 4299(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ (π‘₯𝑅𝑧 ∨ 𝑧𝑅𝑦))))
wfrfor 4329wff FrFor 𝑅𝐴𝑆
wfr 4330wff 𝑅 Fr 𝐴
wse 4331wff 𝑅 Se 𝐴
wwe 4332wff 𝑅 We 𝐴
df-frfor 4333( FrFor 𝑅𝐴𝑆 ↔ (βˆ€π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ 𝑦 ∈ 𝑆) β†’ π‘₯ ∈ 𝑆) β†’ 𝐴 βŠ† 𝑆))
df-frind 4334(𝑅 Fr 𝐴 ↔ βˆ€π‘  FrFor 𝑅𝐴𝑠)
df-se 4335(𝑅 Se 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅π‘₯} ∈ V)
df-wetr 4336(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐴 ((π‘₯𝑅𝑦 ∧ 𝑦𝑅𝑧) β†’ π‘₯𝑅𝑧)))
word 4364wff Ord 𝐴
con0 4365class On
wlim 4366wff Lim 𝐴
csuc 4367class suc 𝐴
df-iord 4368(Ord 𝐴 ↔ (Tr 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 Tr π‘₯))
df-on 4370On = {π‘₯ ∣ Ord π‘₯}
df-ilim 4371(Lim 𝐴 ↔ (Ord 𝐴 ∧ βˆ… ∈ 𝐴 ∧ 𝐴 = βˆͺ 𝐴))
df-suc 4373suc 𝐴 = (𝐴 βˆͺ {𝐴})
ax-un 4435βˆƒπ‘¦βˆ€π‘§(βˆƒπ‘€(𝑧 ∈ 𝑀 ∧ 𝑀 ∈ π‘₯) β†’ 𝑧 ∈ 𝑦)
ax-setind 4538(βˆ€π‘Ž(βˆ€π‘¦ ∈ π‘Ž [𝑦 / π‘Ž]πœ‘ β†’ πœ‘) β†’ βˆ€π‘Žπœ‘)
ax-iinf 4589βˆƒπ‘₯(βˆ… ∈ π‘₯ ∧ βˆ€π‘¦(𝑦 ∈ π‘₯ β†’ suc 𝑦 ∈ π‘₯))
com 4591class Ο‰
df-iom 4592Ο‰ = ∩ {π‘₯ ∣ (βˆ… ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ suc 𝑦 ∈ π‘₯)}
cxp 4626class (𝐴 Γ— 𝐡)
ccnv 4627class ◑𝐴
cdm 4628class dom 𝐴
crn 4629class ran 𝐴
cres 4630class (𝐴 β†Ύ 𝐡)
cima 4631class (𝐴 β€œ 𝐡)
ccom 4632class (𝐴 ∘ 𝐡)
wrel 4633wff Rel 𝐴
df-xp 4634(𝐴 Γ— 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)}
df-rel 4635(Rel 𝐴 ↔ 𝐴 βŠ† (V Γ— V))
df-cnv 4636◑𝐴 = {⟨π‘₯, π‘¦βŸ© ∣ 𝑦𝐴π‘₯}
df-co 4637(𝐴 ∘ 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘§(π‘₯𝐡𝑧 ∧ 𝑧𝐴𝑦)}
df-dm 4638dom 𝐴 = {π‘₯ ∣ βˆƒπ‘¦ π‘₯𝐴𝑦}
df-rn 4639ran 𝐴 = dom ◑𝐴
df-res 4640(𝐴 β†Ύ 𝐡) = (𝐴 ∩ (𝐡 Γ— V))
df-ima 4641(𝐴 β€œ 𝐡) = ran (𝐴 β†Ύ 𝐡)
cio 5178class (β„©π‘₯πœ‘)
df-iota 5180(β„©π‘₯πœ‘) = βˆͺ {𝑦 ∣ {π‘₯ ∣ πœ‘} = {𝑦}}
wfun 5212wff Fun 𝐴
wfn 5213wff 𝐴 Fn 𝐡
wf 5214wff 𝐹:𝐴⟢𝐡
wf1 5215wff 𝐹:𝐴–1-1→𝐡
wfo 5216wff 𝐹:𝐴–onto→𝐡
wf1o 5217wff 𝐹:𝐴–1-1-onto→𝐡
cfv 5218class (πΉβ€˜π΄)
wiso 5219wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐡)
df-fun 5220(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◑𝐴) βŠ† I ))
df-fn 5221(𝐴 Fn 𝐡 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐡))
df-f 5222(𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
df-f1 5223(𝐹:𝐴–1-1→𝐡 ↔ (𝐹:𝐴⟢𝐡 ∧ Fun ◑𝐹))
df-fo 5224(𝐹:𝐴–onto→𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐡))
df-f1o 5225(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹:𝐴–1-1→𝐡 ∧ 𝐹:𝐴–onto→𝐡))
df-fv 5226(πΉβ€˜π΄) = (β„©π‘₯𝐴𝐹π‘₯)
df-isom 5227(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐡) ↔ (𝐻:𝐴–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ↔ (π»β€˜π‘₯)𝑆(π»β€˜π‘¦))))
crio 5832class (β„©π‘₯ ∈ 𝐴 πœ‘)
df-riota 5833(β„©π‘₯ ∈ 𝐴 πœ‘) = (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
co 5877class (𝐴𝐹𝐡)
coprab 5878class {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘}
cmpo 5879class (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)
df-ov 5880(𝐴𝐹𝐡) = (πΉβ€˜βŸ¨π΄, 𝐡⟩)
df-oprab 5881{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘} = {𝑀 ∣ βˆƒπ‘₯βˆƒπ‘¦βˆƒπ‘§(𝑀 = ⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∧ πœ‘)}
df-mpo 5882(π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ 𝑧 = 𝐢)}
cof 6083class βˆ˜π‘“ 𝑅
cofr 6084class βˆ˜π‘Ÿ 𝑅
df-of 6085 βˆ˜π‘“ 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯))))
df-ofr 6086 βˆ˜π‘Ÿ 𝑅 = {βŸ¨π‘“, π‘”βŸ© ∣ βˆ€π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔)(π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯)}
c1st 6141class 1st
c2nd 6142class 2nd
df-1st 61431st = (π‘₯ ∈ V ↦ βˆͺ dom {π‘₯})
df-2nd 61442nd = (π‘₯ ∈ V ↦ βˆͺ ran {π‘₯})
ctpos 6247class tpos 𝐹
df-tpos 6248tpos 𝐹 = (𝐹 ∘ (π‘₯ ∈ (β—‘dom 𝐹 βˆͺ {βˆ…}) ↦ βˆͺ β—‘{π‘₯}))
wsmo 6288wff Smo 𝐴
df-smo 6289(Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
crecs 6307class recs(𝐹)
df-recs 6308recs(𝐹) = βˆͺ {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΉβ€˜(𝑓 β†Ύ 𝑦)))}
crdg 6372class rec(𝐹, 𝐼)
df-irdg 6373rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯)))))
cfrec 6393class frec(𝐹, 𝐼)
df-frec 6394frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {π‘₯ ∣ (βˆƒπ‘š ∈ Ο‰ (dom 𝑔 = suc π‘š ∧ π‘₯ ∈ (πΉβ€˜(π‘”β€˜π‘š))) ∨ (dom 𝑔 = βˆ… ∧ π‘₯ ∈ 𝐼))})) β†Ύ Ο‰)
c1o 6412class 1o
c2o 6413class 2o
c3o 6414class 3o
c4o 6415class 4o
coa 6416class +o
comu 6417class Β·o
coei 6418class ↑o
df-1o 64191o = suc βˆ…
df-2o 64202o = suc 1o
df-3o 64213o = suc 2o
df-4o 64224o = suc 3o
df-oadd 6423 +o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), π‘₯)β€˜π‘¦))
df-omul 6424 Β·o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o π‘₯)), βˆ…)β€˜π‘¦))
df-oexpi 6425 ↑o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 Β·o π‘₯)), 1o)β€˜π‘¦))
wer 6534wff 𝑅 Er 𝐴
cec 6535class [𝐴]𝑅
cqs 6536class (𝐴 / 𝑅)
df-er 6537(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◑𝑅 βˆͺ (𝑅 ∘ 𝑅)) βŠ† 𝑅))
df-ec 6539[𝐴]𝑅 = (𝑅 β€œ {𝐴})
df-qs 6543(𝐴 / 𝑅) = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = [π‘₯]𝑅}
cmap 6650class β†‘π‘š
cpm 6651class ↑pm
df-map 6652 β†‘π‘š = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:π‘¦βŸΆπ‘₯})
df-pm 6653 ↑pm = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 Γ— π‘₯) ∣ Fun 𝑓})
cixp 6700class Xπ‘₯ ∈ 𝐴 𝐡
df-ixp 6701Xπ‘₯ ∈ 𝐴 𝐡 = {𝑓 ∣ (𝑓 Fn {π‘₯ ∣ π‘₯ ∈ 𝐴} ∧ βˆ€π‘₯ ∈ 𝐴 (π‘“β€˜π‘₯) ∈ 𝐡)}
cen 6740class β‰ˆ
cdom 6741class β‰Ό
cfn 6742class Fin
df-en 6743 β‰ˆ = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“ 𝑓:π‘₯–1-1-onto→𝑦}
df-dom 6744 β‰Ό = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“ 𝑓:π‘₯–1-1→𝑦}
df-fin 6745Fin = {π‘₯ ∣ βˆƒπ‘¦ ∈ Ο‰ π‘₯ β‰ˆ 𝑦}
cfi 6969class fi
df-fi 6970fi = (π‘₯ ∈ V ↦ {𝑧 ∣ βˆƒπ‘¦ ∈ (𝒫 π‘₯ ∩ Fin)𝑧 = ∩ 𝑦})
csup 6983class sup(𝐴, 𝐡, 𝑅)
cinf 6984class inf(𝐴, 𝐡, 𝑅)
df-sup 6985sup(𝐴, 𝐡, 𝑅) = βˆͺ {π‘₯ ∈ 𝐡 ∣ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐡 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦𝑅𝑧))}
df-inf 6986inf(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, ◑𝑅)
cdju 7038class (𝐴 βŠ” 𝐡)
df-dju 7039(𝐴 βŠ” 𝐡) = (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡))
cinl 7046class inl
cinr 7047class inr
df-inl 7048inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
df-inr 7049inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
cdjucase 7084class case(𝑅, 𝑆)
df-case 7085case(𝑅, 𝑆) = ((𝑅 ∘ β—‘inl) βˆͺ (𝑆 ∘ β—‘inr))
cdjud 7103class (𝑅 βŠ”d 𝑆)
df-djud 7104(𝑅 βŠ”d 𝑆) = ((𝑅 ∘ β—‘(inl β†Ύ dom 𝑅)) βˆͺ (𝑆 ∘ β—‘(inr β†Ύ dom 𝑆)))
xnninf 7120class β„•βˆž
df-nninf 7121β„•βˆž = {𝑓 ∈ (2o β†‘π‘š Ο‰) ∣ βˆ€π‘– ∈ Ο‰ (π‘“β€˜suc 𝑖) βŠ† (π‘“β€˜π‘–)}
comni 7134class Omni
df-omni 7135Omni = {𝑦 ∣ βˆ€π‘“(𝑓:π‘¦βŸΆ2o β†’ (βˆƒπ‘₯ ∈ 𝑦 (π‘“β€˜π‘₯) = βˆ… ∨ βˆ€π‘₯ ∈ 𝑦 (π‘“β€˜π‘₯) = 1o))}
cmarkov 7151class Markov
df-markov 7152Markov = {𝑦 ∣ βˆ€π‘“(𝑓:π‘¦βŸΆ2o β†’ (Β¬ βˆ€π‘₯ ∈ 𝑦 (π‘“β€˜π‘₯) = 1o β†’ βˆƒπ‘₯ ∈ 𝑦 (π‘“β€˜π‘₯) = βˆ…))}
cwomni 7163class WOmni
df-womni 7164WOmni = {𝑦 ∣ βˆ€π‘“(𝑓:π‘¦βŸΆ2o β†’ DECID βˆ€π‘₯ ∈ 𝑦 (π‘“β€˜π‘₯) = 1o)}
ccrd 7180class card
df-card 7181card = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ π‘₯})
wac 7206wff CHOICE
df-ac 7207(CHOICE ↔ βˆ€π‘₯βˆƒπ‘“(𝑓 βŠ† π‘₯ ∧ 𝑓 Fn dom π‘₯))
wap 7248wff 𝑅 Ap 𝐴
df-pap 7249(𝑅 Ap 𝐴 ↔ ((𝑅 βŠ† (𝐴 Γ— 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 Β¬ π‘₯𝑅π‘₯) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ 𝑦𝑅π‘₯) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ (π‘₯𝑅𝑧 ∨ 𝑦𝑅𝑧)))))
wtap 7250wff 𝑅 TAp 𝐴
df-tap 7251(𝑅 TAp 𝐴 ↔ (𝑅 Ap 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (Β¬ π‘₯𝑅𝑦 β†’ π‘₯ = 𝑦)))
wacc 7263wff CCHOICE
df-cc 7264(CCHOICE ↔ βˆ€π‘₯(dom π‘₯ β‰ˆ Ο‰ β†’ βˆƒπ‘“(𝑓 βŠ† π‘₯ ∧ 𝑓 Fn dom π‘₯)))
cnpi 7273class N
cpli 7274class +N
cmi 7275class Β·N
clti 7276class <N
cplpq 7277class +pQ
cmpq 7278class Β·pQ
cltpq 7279class <pQ
ceq 7280class ~Q
cnq 7281class Q
c1q 7282class 1Q
cplq 7283class +Q
cmq 7284class Β·Q
crq 7285class *Q
cltq 7286class <Q
ceq0 7287class ~Q0
cnq0 7288class Q0
c0q0 7289class 0Q0
cplq0 7290class +Q0
cmq0 7291class Β·Q0
cnp 7292class P
c1p 7293class 1P
cpp 7294class +P
cmp 7295class Β·P
cltp 7296class <P
cer 7297class ~R
cnr 7298class R
c0r 7299class 0R
c1r 7300class 1R
cm1r 7301class -1R
cplr 7302class +R
cmr 7303class Β·R
cltr 7304class <R
df-ni 7305N = (Ο‰ βˆ– {βˆ…})
df-pli 7306 +N = ( +o β†Ύ (N Γ— N))
df-mi 7307 Β·N = ( Β·o β†Ύ (N Γ— N))
df-lti 7308 <N = ( E ∩ (N Γ— N))
df-plpq 7345 +pQ = (π‘₯ ∈ (N Γ— N), 𝑦 ∈ (N Γ— N) ↦ ⟨(((1st β€˜π‘₯) Β·N (2nd β€˜π‘¦)) +N ((1st β€˜π‘¦) Β·N (2nd β€˜π‘₯))), ((2nd β€˜π‘₯) Β·N (2nd β€˜π‘¦))⟩)
df-mpq 7346 Β·pQ = (π‘₯ ∈ (N Γ— N), 𝑦 ∈ (N Γ— N) ↦ ⟨((1st β€˜π‘₯) Β·N (1st β€˜π‘¦)), ((2nd β€˜π‘₯) Β·N (2nd β€˜π‘¦))⟩)
df-ltpq 7347 <pQ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (N Γ— N) ∧ 𝑦 ∈ (N Γ— N)) ∧ ((1st β€˜π‘₯) Β·N (2nd β€˜π‘¦)) <N ((1st β€˜π‘¦) Β·N (2nd β€˜π‘₯)))}
df-enq 7348 ~Q = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (N Γ— N) ∧ 𝑦 ∈ (N Γ— N)) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = βŸ¨π‘§, π‘€βŸ© ∧ 𝑦 = βŸ¨π‘£, π‘’βŸ©) ∧ (𝑧 Β·N 𝑒) = (𝑀 Β·N 𝑣)))}
df-nqqs 7349Q = ((N Γ— N) / ~Q )
df-plqqs 7350 +Q = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ Q ∧ 𝑦 ∈ Q) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~Q ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~Q ) ∧ 𝑧 = [(βŸ¨π‘€, π‘£βŸ© +pQ βŸ¨π‘’, π‘“βŸ©)] ~Q ))}
df-mqqs 7351 Β·Q = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ Q ∧ 𝑦 ∈ Q) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~Q ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~Q ) ∧ 𝑧 = [(βŸ¨π‘€, π‘£βŸ© Β·pQ βŸ¨π‘’, π‘“βŸ©)] ~Q ))}
df-1nqqs 73521Q = [⟨1o, 1o⟩] ~Q
df-rq 7353*Q = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ Q ∧ 𝑦 ∈ Q ∧ (π‘₯ Β·Q 𝑦) = 1Q)}
df-ltnqqs 7354 <Q = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ Q ∧ 𝑦 ∈ Q) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = [βŸ¨π‘§, π‘€βŸ©] ~Q ∧ 𝑦 = [βŸ¨π‘£, π‘’βŸ©] ~Q ) ∧ (𝑧 Β·N 𝑒) <N (𝑀 Β·N 𝑣)))}
df-enq0 7425 ~Q0 = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Ο‰ Γ— N) ∧ 𝑦 ∈ (Ο‰ Γ— N)) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = βŸ¨π‘§, π‘€βŸ© ∧ 𝑦 = βŸ¨π‘£, π‘’βŸ©) ∧ (𝑧 Β·o 𝑒) = (𝑀 Β·o 𝑣)))}
df-nq0 7426Q0 = ((Ο‰ Γ— N) / ~Q0 )
df-0nq0 74270Q0 = [βŸ¨βˆ…, 1o⟩] ~Q0
df-plq0 7428 +Q0 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~Q0 ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~Q0 ) ∧ 𝑧 = [⟨((𝑀 Β·o 𝑓) +o (𝑣 Β·o 𝑒)), (𝑣 Β·o 𝑓)⟩] ~Q0 ))}
df-mq0 7429 Β·Q0 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~Q0 ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~Q0 ) ∧ 𝑧 = [⟨(𝑀 Β·o 𝑒), (𝑣 Β·o 𝑓)⟩] ~Q0 ))}
df-inp 7467P = {βŸ¨π‘™, π‘’βŸ© ∣ (((𝑙 βŠ† Q ∧ 𝑒 βŠ† Q) ∧ (βˆƒπ‘ž ∈ Q π‘ž ∈ 𝑙 ∧ βˆƒπ‘Ÿ ∈ Q π‘Ÿ ∈ 𝑒)) ∧ ((βˆ€π‘ž ∈ Q (π‘ž ∈ 𝑙 ↔ βˆƒπ‘Ÿ ∈ Q (π‘ž <Q π‘Ÿ ∧ π‘Ÿ ∈ 𝑙)) ∧ βˆ€π‘Ÿ ∈ Q (π‘Ÿ ∈ 𝑒 ↔ βˆƒπ‘ž ∈ Q (π‘ž <Q π‘Ÿ ∧ π‘ž ∈ 𝑒))) ∧ βˆ€π‘ž ∈ Q Β¬ (π‘ž ∈ 𝑙 ∧ π‘ž ∈ 𝑒) ∧ βˆ€π‘ž ∈ Q βˆ€π‘Ÿ ∈ Q (π‘ž <Q π‘Ÿ β†’ (π‘ž ∈ 𝑙 ∨ π‘Ÿ ∈ 𝑒))))}
df-i1p 74681P = ⟨{𝑙 ∣ 𝑙 <Q 1Q}, {𝑒 ∣ 1Q <Q 𝑒}⟩
df-iplp 7469 +P = (π‘₯ ∈ P, 𝑦 ∈ P ↦ ⟨{π‘ž ∈ Q ∣ βˆƒπ‘Ÿ ∈ Q βˆƒπ‘  ∈ Q (π‘Ÿ ∈ (1st β€˜π‘₯) ∧ 𝑠 ∈ (1st β€˜π‘¦) ∧ π‘ž = (π‘Ÿ +Q 𝑠))}, {π‘ž ∈ Q ∣ βˆƒπ‘Ÿ ∈ Q βˆƒπ‘  ∈ Q (π‘Ÿ ∈ (2nd β€˜π‘₯) ∧ 𝑠 ∈ (2nd β€˜π‘¦) ∧ π‘ž = (π‘Ÿ +Q 𝑠))}⟩)
df-imp 7470 Β·P = (π‘₯ ∈ P, 𝑦 ∈ P ↦ ⟨{π‘ž ∈ Q ∣ βˆƒπ‘Ÿ ∈ Q βˆƒπ‘  ∈ Q (π‘Ÿ ∈ (1st β€˜π‘₯) ∧ 𝑠 ∈ (1st β€˜π‘¦) ∧ π‘ž = (π‘Ÿ Β·Q 𝑠))}, {π‘ž ∈ Q ∣ βˆƒπ‘Ÿ ∈ Q βˆƒπ‘  ∈ Q (π‘Ÿ ∈ (2nd β€˜π‘₯) ∧ 𝑠 ∈ (2nd β€˜π‘¦) ∧ π‘ž = (π‘Ÿ Β·Q 𝑠))}⟩)
df-iltp 7471<P = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ P ∧ 𝑦 ∈ P) ∧ βˆƒπ‘ž ∈ Q (π‘ž ∈ (2nd β€˜π‘₯) ∧ π‘ž ∈ (1st β€˜π‘¦)))}
df-enr 7727 ~R = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (P Γ— P) ∧ 𝑦 ∈ (P Γ— P)) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = βŸ¨π‘§, π‘€βŸ© ∧ 𝑦 = βŸ¨π‘£, π‘’βŸ©) ∧ (𝑧 +P 𝑒) = (𝑀 +P 𝑣)))}
df-nr 7728R = ((P Γ— P) / ~R )
df-plr 7729 +R = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~R ) ∧ 𝑧 = [⟨(𝑀 +P 𝑒), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 7730 Β·R = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~R ) ∧ 𝑧 = [⟨((𝑀 Β·P 𝑒) +P (𝑣 Β·P 𝑓)), ((𝑀 Β·P 𝑓) +P (𝑣 Β·P 𝑒))⟩] ~R ))}
df-ltr 7731 <R = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = [βŸ¨π‘§, π‘€βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘£, π‘’βŸ©] ~R ) ∧ (𝑧 +P 𝑒)<P (𝑀 +P 𝑣)))}
df-0r 77320R = [⟨1P, 1P⟩] ~R
df-1r 77331R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 7734-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 7811class β„‚
cr 7812class ℝ
cc0 7813class 0
c1 7814class 1
ci 7815class i
caddc 7816class +
cltrr 7817class <ℝ
cmul 7818class Β·
df-c 7819β„‚ = (R Γ— R)
df-0 78200 = ⟨0R, 0R⟩
df-1 78211 = ⟨1R, 0R⟩
df-i 7822i = ⟨0R, 1R⟩
df-r 7823ℝ = (R Γ— {0R})
df-add 7824 + = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = βŸ¨π‘€, π‘£βŸ© ∧ 𝑦 = βŸ¨π‘’, π‘“βŸ©) ∧ 𝑧 = ⟨(𝑀 +R 𝑒), (𝑣 +R 𝑓)⟩))}
df-mul 7825 Β· = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = βŸ¨π‘€, π‘£βŸ© ∧ 𝑦 = βŸ¨π‘’, π‘“βŸ©) ∧ 𝑧 = ⟨((𝑀 Β·R 𝑒) +R (-1R Β·R (𝑣 Β·R 𝑓))), ((𝑣 Β·R 𝑒) +R (𝑀 Β·R 𝑓))⟩))}
df-lt 7826 <ℝ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ βˆƒπ‘§βˆƒπ‘€((π‘₯ = βŸ¨π‘§, 0R⟩ ∧ 𝑦 = βŸ¨π‘€, 0R⟩) ∧ 𝑧 <R 𝑀))}
ax-cnex 7904β„‚ ∈ V
ax-resscn 7905ℝ βŠ† β„‚
ax-1cn 79061 ∈ β„‚
ax-1re 79071 ∈ ℝ
ax-icn 7908i ∈ β„‚
ax-addcl 7909((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
ax-addrcl 7910((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
ax-mulcl 7911((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
ax-mulrcl 7912((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
ax-addcom 7913((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) = (𝐡 + 𝐴))
ax-mulcom 7914((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
ax-addass 7915((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
ax-mulass 7916((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
ax-distr 7917((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
ax-i2m1 7918((i Β· i) + 1) = 0
ax-0lt1 79190 <ℝ 1
ax-1rid 7920(𝐴 ∈ ℝ β†’ (𝐴 Β· 1) = 𝐴)
ax-0id 7921(𝐴 ∈ β„‚ β†’ (𝐴 + 0) = 𝐴)
ax-rnegex 7922(𝐴 ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ (𝐴 + π‘₯) = 0)
ax-precex 7923((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) β†’ βˆƒπ‘₯ ∈ ℝ (0 <ℝ π‘₯ ∧ (𝐴 Β· π‘₯) = 1))
ax-cnre 7924(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
ax-pre-ltirr 7925(𝐴 ∈ ℝ β†’ Β¬ 𝐴 <ℝ 𝐴)
ax-pre-ltwlin 7926((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐴 <ℝ 𝐢 ∨ 𝐢 <ℝ 𝐡)))
ax-pre-lttrn 7927((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 <ℝ 𝐡 ∧ 𝐡 <ℝ 𝐢) β†’ 𝐴 <ℝ 𝐢))
ax-pre-apti 7928((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ Β¬ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)) β†’ 𝐴 = 𝐡)
ax-pre-ltadd 7929((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐢 + 𝐴) <ℝ (𝐢 + 𝐡)))
ax-pre-mulgt0 7930((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐡) β†’ 0 <ℝ (𝐴 Β· 𝐡)))
ax-pre-mulext 7931((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 Β· 𝐢) <ℝ (𝐡 Β· 𝐢) β†’ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)))
ax-arch 7932(𝐴 ∈ ℝ β†’ βˆƒπ‘› ∈ ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}𝐴 <ℝ 𝑛)
ax-caucvg 7933𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
ax-pre-suploc 7934(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
ax-addf 7935 + :(β„‚ Γ— β„‚)βŸΆβ„‚
ax-mulf 7936 Β· :(β„‚ Γ— β„‚)βŸΆβ„‚
cpnf 7991class +∞
cmnf 7992class -∞
cxr 7993class ℝ*
clt 7994class <
cle 7995class ≀
df-pnf 7996+∞ = 𝒫 βˆͺ β„‚
df-mnf 7997-∞ = 𝒫 +∞
df-xr 7998ℝ* = (ℝ βˆͺ {+∞, -∞})
df-ltxr 7999 < = ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ π‘₯ <ℝ 𝑦)} βˆͺ (((ℝ βˆͺ {-∞}) Γ— {+∞}) βˆͺ ({-∞} Γ— ℝ)))
df-le 8000 ≀ = ((ℝ* Γ— ℝ*) βˆ– β—‘ < )
cmin 8130class βˆ’
cneg 8131class -𝐴
df-sub 8132 βˆ’ = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (℩𝑧 ∈ β„‚ (𝑦 + 𝑧) = π‘₯))
df-neg 8133-𝐴 = (0 βˆ’ 𝐴)
creap 8533class #ℝ
df-reap 8534 #ℝ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (π‘₯ < 𝑦 ∨ 𝑦 < π‘₯))}
cap 8540class #
df-ap 8541 # = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘Ÿ ∈ ℝ βˆƒπ‘  ∈ ℝ βˆƒπ‘‘ ∈ ℝ βˆƒπ‘’ ∈ ℝ ((π‘₯ = (π‘Ÿ + (i Β· 𝑠)) ∧ 𝑦 = (𝑑 + (i Β· 𝑒))) ∧ (π‘Ÿ #ℝ 𝑑 ∨ 𝑠 #ℝ 𝑒))}
cdiv 8631class /
df-div 8632 / = (π‘₯ ∈ β„‚, 𝑦 ∈ (β„‚ βˆ– {0}) ↦ (℩𝑧 ∈ β„‚ (𝑦 Β· 𝑧) = π‘₯))
cn 8921class β„•
df-inn 8922β„• = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}
c2 8972class 2
c3 8973class 3
c4 8974class 4
c5 8975class 5
c6 8976class 6
c7 8977class 7
c8 8978class 8
c9 8979class 9
df-2 89802 = (1 + 1)
df-3 89813 = (2 + 1)
df-4 89824 = (3 + 1)
df-5 89835 = (4 + 1)
df-6 89846 = (5 + 1)
df-7 89857 = (6 + 1)
df-8 89868 = (7 + 1)
df-9 89879 = (8 + 1)
cn0 9178class β„•0
df-n0 9179β„•0 = (β„• βˆͺ {0})
cxnn0 9241class β„•0*
df-xnn0 9242β„•0* = (β„•0 βˆͺ {+∞})
cz 9255class β„€
df-z 9256β„€ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ β„• ∨ -𝑛 ∈ β„•)}
cdc 9386class 𝐴𝐡
df-dec 9387𝐴𝐡 = (((9 + 1) Β· 𝐴) + 𝐡)
cuz 9530class β„€β‰₯
df-uz 9531β„€β‰₯ = (𝑗 ∈ β„€ ↦ {π‘˜ ∈ β„€ ∣ 𝑗 ≀ π‘˜})
cq 9621class β„š
df-q 9622β„š = ( / β€œ (β„€ Γ— β„•))
crp 9655class ℝ+
df-rp 9656ℝ+ = {π‘₯ ∈ ℝ ∣ 0 < π‘₯}
cxne 9771class -𝑒𝐴
cxad 9772class +𝑒
cxmu 9773class Β·e
df-xneg 9774-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 9775 +𝑒 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))))
df-xmul 9776 Β·e = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((π‘₯ = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ π‘₯ = +∞) ∨ (𝑦 < 0 ∧ π‘₯ = -∞)) ∨ ((0 < π‘₯ ∧ 𝑦 = +∞) ∨ (π‘₯ < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ π‘₯ = -∞) ∨ (𝑦 < 0 ∧ π‘₯ = +∞)) ∨ ((0 < π‘₯ ∧ 𝑦 = -∞) ∨ (π‘₯ < 0 ∧ 𝑦 = +∞))), -∞, (π‘₯ Β· 𝑦)))))
cioo 9890class (,)
cioc 9891class (,]
cico 9892class [,)
cicc 9893class [,]
df-ioo 9894(,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 < 𝑦)})
df-ioc 9895(,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 ≀ 𝑦)})
df-ico 9896[,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 < 𝑦)})
df-icc 9897[,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 ≀ 𝑦)})
cfz 10010class ...
df-fz 10011... = (π‘š ∈ β„€, 𝑛 ∈ β„€ ↦ {π‘˜ ∈ β„€ ∣ (π‘š ≀ π‘˜ ∧ π‘˜ ≀ 𝑛)})
cfzo 10144class ..^
df-fzo 10145..^ = (π‘š ∈ β„€, 𝑛 ∈ β„€ ↦ (π‘š...(𝑛 βˆ’ 1)))
cfl 10270class ⌊
cceil 10271class ⌈
df-fl 10272⌊ = (π‘₯ ∈ ℝ ↦ (℩𝑦 ∈ β„€ (𝑦 ≀ π‘₯ ∧ π‘₯ < (𝑦 + 1))))
df-ceil 10273⌈ = (π‘₯ ∈ ℝ ↦ -(βŒŠβ€˜-π‘₯))
cmo 10324class mod
df-mod 10325 mod = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (π‘₯ βˆ’ (𝑦 Β· (βŒŠβ€˜(π‘₯ / 𝑦)))))
cseq 10447class seq𝑀( + , 𝐹)
df-seqfrec 10448seq𝑀( + , 𝐹) = ran frec((π‘₯ ∈ (β„€β‰₯β€˜π‘€), 𝑦 ∈ V ↦ ⟨(π‘₯ + 1), (𝑦 + (πΉβ€˜(π‘₯ + 1)))⟩), βŸ¨π‘€, (πΉβ€˜π‘€)⟩)
cexp 10521class ↑
df-exp 10522↑ = (π‘₯ ∈ β„‚, 𝑦 ∈ β„€ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( Β· , (β„• Γ— {π‘₯}))β€˜π‘¦), (1 / (seq1( Β· , (β„• Γ— {π‘₯}))β€˜-𝑦)))))
cfa 10707class !
df-fac 10708! = ({⟨0, 1⟩} βˆͺ seq1( Β· , I ))
cbc 10729class C
df-bc 10730C = (𝑛 ∈ β„•0, π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ (0...𝑛), ((!β€˜π‘›) / ((!β€˜(𝑛 βˆ’ π‘˜)) Β· (!β€˜π‘˜))), 0))
chash 10757class β™―
df-ihash 10758β™― = ((frec((π‘₯ ∈ β„€ ↦ (π‘₯ + 1)), 0) βˆͺ {βŸ¨Ο‰, +∞⟩}) ∘ (π‘₯ ∈ V ↦ βˆͺ {𝑦 ∈ (Ο‰ βˆͺ {Ο‰}) ∣ 𝑦 β‰Ό π‘₯}))
cshi 10825class shift
df-shft 10826 shift = (𝑓 ∈ V, π‘₯ ∈ β„‚ ↦ {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 ∈ β„‚ ∧ (𝑦 βˆ’ π‘₯)𝑓𝑧)})
ccj 10850class βˆ—
cre 10851class β„œ
cim 10852class β„‘
df-cj 10853βˆ— = (π‘₯ ∈ β„‚ ↦ (℩𝑦 ∈ β„‚ ((π‘₯ + 𝑦) ∈ ℝ ∧ (i Β· (π‘₯ βˆ’ 𝑦)) ∈ ℝ)))
df-re 10854β„œ = (π‘₯ ∈ β„‚ ↦ ((π‘₯ + (βˆ—β€˜π‘₯)) / 2))
df-im 10855β„‘ = (π‘₯ ∈ β„‚ ↦ (β„œβ€˜(π‘₯ / i)))
csqrt 11007class √
cabs 11008class abs
df-rsqrt 11009√ = (π‘₯ ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = π‘₯ ∧ 0 ≀ 𝑦)))
df-abs 11010abs = (π‘₯ ∈ β„‚ ↦ (βˆšβ€˜(π‘₯ Β· (βˆ—β€˜π‘₯))))
cli 11288class ⇝
df-clim 11289 ⇝ = {βŸ¨π‘“, π‘¦βŸ© ∣ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((π‘“β€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((π‘“β€˜π‘˜) βˆ’ 𝑦)) < π‘₯))}
csu 11363class Ξ£π‘˜ ∈ 𝐴 𝐡
df-sumdc 11364Ξ£π‘˜ ∈ 𝐴 𝐡 = (β„©π‘₯(βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘š)DECID 𝑗 ∈ 𝐴 ∧ seqπ‘š( + , (𝑛 ∈ β„€ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / π‘˜β¦Œπ΅, 0))) ⇝ π‘₯) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( + , (𝑛 ∈ β„• ↦ if(𝑛 ≀ π‘š, ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 0)))β€˜π‘š))))
cprod 11560class βˆπ‘˜ ∈ 𝐴 𝐡
df-proddc 11561βˆπ‘˜ ∈ 𝐴 𝐡 = (β„©π‘₯(βˆƒπ‘š ∈ β„€ ((𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆ€π‘— ∈ (β„€β‰₯β€˜π‘š)DECID 𝑗 ∈ 𝐴) ∧ (βˆƒπ‘› ∈ (β„€β‰₯β€˜π‘š)βˆƒπ‘¦(𝑦 # 0 ∧ seq𝑛( Β· , (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))) ⇝ 𝑦) ∧ seqπ‘š( Β· , (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))) ⇝ π‘₯)) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( Β· , (𝑛 ∈ β„• ↦ if(𝑛 ≀ π‘š, ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅, 1)))β€˜π‘š))))
ce 11652class exp
ceu 11653class e
csin 11654class sin
ccos 11655class cos
ctan 11656class tan
cpi 11657class Ο€
df-ef 11658exp = (π‘₯ ∈ β„‚ ↦ Ξ£π‘˜ ∈ β„•0 ((π‘₯β†‘π‘˜) / (!β€˜π‘˜)))
df-e 11659e = (expβ€˜1)
df-sin 11660sin = (π‘₯ ∈ β„‚ ↦ (((expβ€˜(i Β· π‘₯)) βˆ’ (expβ€˜(-i Β· π‘₯))) / (2 Β· i)))
df-cos 11661cos = (π‘₯ ∈ β„‚ ↦ (((expβ€˜(i Β· π‘₯)) + (expβ€˜(-i Β· π‘₯))) / 2))
df-tan 11662tan = (π‘₯ ∈ (β—‘cos β€œ (β„‚ βˆ– {0})) ↦ ((sinβ€˜π‘₯) / (cosβ€˜π‘₯)))
df-pi 11663Ο€ = inf((ℝ+ ∩ (β—‘sin β€œ {0})), ℝ, < )
ctau 11784class Ο„
df-tau 11785Ο„ = inf((ℝ+ ∩ (β—‘cos β€œ {1})), ℝ, < )
cdvds 11796class βˆ₯
df-dvds 11797 βˆ₯ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) ∧ βˆƒπ‘› ∈ β„€ (𝑛 Β· π‘₯) = 𝑦)}
cgcd 11945class gcd
df-gcd 11946 gcd = (π‘₯ ∈ β„€, 𝑦 ∈ β„€ ↦ if((π‘₯ = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ β„€ ∣ (𝑛 βˆ₯ π‘₯ ∧ 𝑛 βˆ₯ 𝑦)}, ℝ, < )))
clcm 12062class lcm
df-lcm 12063 lcm = (π‘₯ ∈ β„€, 𝑦 ∈ β„€ ↦ if((π‘₯ = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ β„• ∣ (π‘₯ βˆ₯ 𝑛 ∧ 𝑦 βˆ₯ 𝑛)}, ℝ, < )))
cprime 12109class β„™
df-prm 12110β„™ = {𝑝 ∈ β„• ∣ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑝} β‰ˆ 2o}
cnumer 12183class numer
cdenom 12184class denom
df-numer 12185numer = (𝑦 ∈ β„š ↦ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
df-denom 12186denom = (𝑦 ∈ β„š ↦ (2nd β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
codz 12210class odβ„€
cphi 12211class Ο•
df-odz 12212odβ„€ = (𝑛 ∈ β„• ↦ (π‘₯ ∈ {π‘₯ ∈ β„€ ∣ (π‘₯ gcd 𝑛) = 1} ↦ inf({π‘š ∈ β„• ∣ 𝑛 βˆ₯ ((π‘₯β†‘π‘š) βˆ’ 1)}, ℝ, < )))
df-phi 12213Ο• = (𝑛 ∈ β„• ↦ (β™―β€˜{π‘₯ ∈ (1...𝑛) ∣ (π‘₯ gcd 𝑛) = 1}))
cpc 12286class pCnt
df-pc 12287 pCnt = (𝑝 ∈ β„™, π‘Ÿ ∈ β„š ↦ if(π‘Ÿ = 0, +∞, (β„©π‘§βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ β„• (π‘Ÿ = (π‘₯ / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ β„•0 ∣ (𝑝↑𝑛) βˆ₯ π‘₯}, ℝ, < ) βˆ’ sup({𝑛 ∈ β„•0 ∣ (𝑝↑𝑛) βˆ₯ 𝑦}, ℝ, < ))))))
cgz 12369class β„€[i]
df-gz 12370β„€[i] = {π‘₯ ∈ β„‚ ∣ ((β„œβ€˜π‘₯) ∈ β„€ ∧ (β„‘β€˜π‘₯) ∈ β„€)}
cstr 12460class Struct
cnx 12461class ndx
csts 12462class sSet
cslot 12463class Slot 𝐴
cbs 12464class Base
cress 12465class β†Ύs
df-struct 12466 Struct = {βŸ¨π‘“, π‘₯⟩ ∣ (π‘₯ ∈ ( ≀ ∩ (β„• Γ— β„•)) ∧ Fun (𝑓 βˆ– {βˆ…}) ∧ dom 𝑓 βŠ† (...β€˜π‘₯))}
df-ndx 12467ndx = ( I β†Ύ β„•)
df-slot 12468Slot 𝐴 = (π‘₯ ∈ V ↦ (π‘₯β€˜π΄))
df-base 12470Base = Slot 1
df-sets 12471 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 β†Ύ (V βˆ– dom {𝑒})) βˆͺ {𝑒}))
df-iress 12472 β†Ύs = (𝑀 ∈ V, π‘₯ ∈ V ↦ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩))
cplusg 12538class +g
cmulr 12539class .r
cstv 12540class *π‘Ÿ
csca 12541class Scalar
cvsca 12542class ·𝑠
cip 12543class ·𝑖
cts 12544class TopSet
cple 12545class le
coc 12546class oc
cds 12547class dist
cunif 12548class UnifSet
chom 12549class Hom
cco 12550class comp
df-plusg 12551+g = Slot 2
df-mulr 12552.r = Slot 3
df-starv 12553*π‘Ÿ = Slot 4
df-sca 12554Scalar = Slot 5
df-vsca 12555 ·𝑠 = Slot 6
df-ip 12556·𝑖 = Slot 8
df-tset 12557TopSet = Slot 9
df-ple 12558le = Slot 10
df-ocomp 12559oc = Slot 11
df-ds 12560dist = Slot 12
df-unif 12561UnifSet = Slot 13
df-hom 12562Hom = Slot 14
df-cco 12563comp = Slot 15
crest 12693class β†Ύt
ctopn 12694class TopOpen
df-rest 12695 β†Ύt = (𝑗 ∈ V, π‘₯ ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ π‘₯)))
df-topn 12696TopOpen = (𝑀 ∈ V ↦ ((TopSetβ€˜π‘€) β†Ύt (Baseβ€˜π‘€)))
ctg 12708class topGen
cpt 12709class ∏t
c0g 12710class 0g
cgsu 12711class Ξ£g
df-0g 127120g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Baseβ€˜π‘”) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘”)((𝑒(+gβ€˜π‘”)π‘₯) = π‘₯ ∧ (π‘₯(+gβ€˜π‘”)𝑒) = π‘₯))))
df-gsum 12713 Ξ£g = (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋{π‘₯ ∈ (Baseβ€˜π‘€) ∣ βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((π‘₯(+gβ€˜π‘€)𝑦) = 𝑦 ∧ (𝑦(+gβ€˜π‘€)π‘₯) = 𝑦)} / π‘œβ¦Œif(ran 𝑓 βŠ† π‘œ, (0gβ€˜π‘€), if(dom 𝑓 ∈ ran ..., (β„©π‘₯βˆƒπ‘šβˆƒπ‘› ∈ (β„€β‰₯β€˜π‘š)(dom 𝑓 = (π‘š...𝑛) ∧ π‘₯ = (seqπ‘š((+gβ€˜π‘€), 𝑓)β€˜π‘›))), (β„©π‘₯βˆƒπ‘”[(◑𝑓 β€œ (V βˆ– π‘œ)) / 𝑦](𝑔:(1...(β™―β€˜π‘¦))–1-1-onto→𝑦 ∧ π‘₯ = (seq1((+gβ€˜π‘€), (𝑓 ∘ 𝑔))β€˜(β™―β€˜π‘¦)))))))
df-topgen 12714topGen = (π‘₯ ∈ V ↦ {𝑦 ∣ 𝑦 βŠ† βˆͺ (π‘₯ ∩ 𝒫 𝑦)})
df-pt 12715∏t = (𝑓 ∈ V ↦ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}))
cprds 12719class Xs
cpws 12720class ↑s
df-prds 12721Xs = (𝑠 ∈ V, π‘Ÿ ∈ V ↦ ⦋Xπ‘₯ ∈ dom π‘Ÿ(Baseβ€˜(π‘Ÿβ€˜π‘₯)) / π‘£β¦Œβ¦‹(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) / β„Žβ¦Œ(({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘ ), 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ (𝑓( ·𝑠 β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Ξ£g (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ π‘Ÿ))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ dom π‘Ÿ(π‘“β€˜π‘₯)(leβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), β„ŽβŸ©, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝑣 Γ— 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (π‘β„Ž(2nd β€˜π‘Ž)), 𝑒 ∈ (β„Žβ€˜π‘Ž) ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘Ÿβ€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
df-pws 12724 ↑s = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ ((Scalarβ€˜π‘Ÿ)Xs(𝑖 Γ— {π‘Ÿ})))
cimas 12725class β€œs
cqus 12726class /s
cxps 12727class Γ—s
df-iimas 12728 β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩})
df-qus 12729 /s = (π‘Ÿ ∈ V, 𝑒 ∈ V ↦ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ [π‘₯]𝑒) β€œs π‘Ÿ))
df-xps 12730 Γ—s = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (β—‘(π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©})))
cplusf 12777class +𝑓
cmgm 12778class Mgm
df-plusf 12779+𝑓 = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯(+gβ€˜π‘”)𝑦)))
df-mgm 12780Mgm = {𝑔 ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘œπ‘¦) ∈ 𝑏}
csgrp 12812class Smgrp
df-sgrp 12813Smgrp = {𝑔 ∈ Mgm ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§))}
cmnd 12822class Mnd
df-mnd 12823Mnd = {𝑔 ∈ Smgrp ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / 𝑝]βˆƒπ‘’ ∈ 𝑏 βˆ€π‘₯ ∈ 𝑏 ((𝑒𝑝π‘₯) = π‘₯ ∧ (π‘₯𝑝𝑒) = π‘₯)}
cmhm 12854class MndHom
csubmnd 12855class SubMnd
df-mhm 12856 MndHom = (𝑠 ∈ Mnd, 𝑑 ∈ Mnd ↦ {𝑓 ∈ ((Baseβ€˜π‘‘) β†‘π‘š (Baseβ€˜π‘ )) ∣ (βˆ€π‘₯ ∈ (Baseβ€˜π‘ )βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯(+gβ€˜π‘ )𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘‘)(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(0gβ€˜π‘ )) = (0gβ€˜π‘‘))})
df-submnd 12857SubMnd = (𝑠 ∈ Mnd ↦ {𝑑 ∈ 𝒫 (Baseβ€˜π‘ ) ∣ ((0gβ€˜π‘ ) ∈ 𝑑 ∧ βˆ€π‘₯ ∈ 𝑑 βˆ€π‘¦ ∈ 𝑑 (π‘₯(+gβ€˜π‘ )𝑦) ∈ 𝑑)})
cgrp 12882class Grp
cminusg 12883class invg
csg 12884class -g
df-grp 12885Grp = {𝑔 ∈ Mnd ∣ βˆ€π‘Ž ∈ (Baseβ€˜π‘”)βˆƒπ‘š ∈ (Baseβ€˜π‘”)(π‘š(+gβ€˜π‘”)π‘Ž) = (0gβ€˜π‘”)}
df-minusg 12886invg = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”) ↦ (℩𝑀 ∈ (Baseβ€˜π‘”)(𝑀(+gβ€˜π‘”)π‘₯) = (0gβ€˜π‘”))))
df-sbg 12887-g = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯(+gβ€˜π‘”)((invgβ€˜π‘”)β€˜π‘¦))))
cmg 12988class .g
df-mulg 12989.g = (𝑔 ∈ V ↦ (𝑛 ∈ β„€, π‘₯ ∈ (Baseβ€˜π‘”) ↦ if(𝑛 = 0, (0gβ€˜π‘”), ⦋seq1((+gβ€˜π‘”), (β„• Γ— {π‘₯})) / π‘ β¦Œif(0 < 𝑛, (π‘ β€˜π‘›), ((invgβ€˜π‘”)β€˜(π‘ β€˜-𝑛))))))
csubg 13032class SubGrp
cnsg 13033class NrmSGrp
cqg 13034class ~QG
df-subg 13035SubGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ Grp})
df-nsg 13036NrmSGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ (SubGrpβ€˜π‘€) ∣ [(Baseβ€˜π‘€) / 𝑏][(+gβ€˜π‘€) / 𝑝]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 ((π‘₯𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝π‘₯) ∈ 𝑠)})
df-eqg 13037 ~QG = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘Ÿ) ∧ (((invgβ€˜π‘Ÿ)β€˜π‘₯)(+gβ€˜π‘Ÿ)𝑦) ∈ 𝑖)})
ccmn 13093class CMnd
cabl 13094class Abel
df-cmn 13095CMnd = {𝑔 ∈ Mnd ∣ βˆ€π‘Ž ∈ (Baseβ€˜π‘”)βˆ€π‘ ∈ (Baseβ€˜π‘”)(π‘Ž(+gβ€˜π‘”)𝑏) = (𝑏(+gβ€˜π‘”)π‘Ž)}
df-abl 13096Abel = (Grp ∩ CMnd)
cmgp 13135class mulGrp
df-mgp 13136mulGrp = (𝑀 ∈ V ↦ (𝑀 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘€)⟩))
cur 13147class 1r
df-ur 131481r = (0g ∘ mulGrp)
csrg 13151class SRing
df-srg 13152SRing = {𝑓 ∈ CMnd ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑][(0gβ€˜π‘“) / 𝑛]βˆ€π‘₯ ∈ π‘Ÿ (βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ∧ ((𝑛𝑑π‘₯) = 𝑛 ∧ (π‘₯𝑑𝑛) = 𝑛)))}
crg 13184class Ring
ccrg 13185class CRing
df-ring 13186Ring = {𝑓 ∈ Grp ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑]βˆ€π‘₯ ∈ π‘Ÿ βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))))}
df-cring 13187CRing = {𝑓 ∈ Ring ∣ (mulGrpβ€˜π‘“) ∈ CMnd}
coppr 13244class oppr
df-oppr 13245oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘“)⟩))
cdsr 13260class βˆ₯r
cui 13261class Unit
cir 13262class Irred
df-dvdsr 13263βˆ₯r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘§ ∈ (Baseβ€˜π‘€)(𝑧(.rβ€˜π‘€)π‘₯) = 𝑦)})
df-unit 13264Unit = (𝑀 ∈ V ↦ (β—‘((βˆ₯rβ€˜π‘€) ∩ (βˆ₯rβ€˜(opprβ€˜π‘€))) β€œ {(1rβ€˜π‘€)}))
df-irred 13265Irred = (𝑀 ∈ V ↦ ⦋((Baseβ€˜π‘€) βˆ– (Unitβ€˜π‘€)) / π‘β¦Œ{𝑧 ∈ 𝑏 ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘€)𝑦) β‰  𝑧})
cinvr 13294class invr
df-invr 13295invr = (π‘Ÿ ∈ V ↦ (invgβ€˜((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ))))
cdvr 13305class /r
df-dvr 13306/r = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Unitβ€˜π‘Ÿ) ↦ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦))))
crh 13324class RingHom
crs 13325class RingIso
df-rnghom 13326 RingHom = (π‘Ÿ ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 β†‘π‘š 𝑣) ∣ ((π‘“β€˜(1rβ€˜π‘Ÿ)) = (1rβ€˜π‘ ) ∧ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦))))})
df-rngiso 13327 RingIso = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (π‘Ÿ RingHom 𝑠) ∣ ◑𝑓 ∈ (𝑠 RingHom π‘Ÿ)})
cnzr 13328class NzRing
df-nzr 13329NzRing = {π‘Ÿ ∈ Ring ∣ (1rβ€˜π‘Ÿ) β‰  (0gβ€˜π‘Ÿ)}
clring 13336class LRing
df-lring 13337LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
csubrg 13343class SubRing
crgspn 13344class RingSpan
df-subrg 13345SubRing = (𝑀 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ((𝑀 β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘€) ∈ 𝑠)})
df-rgspn 13346RingSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
capr 13375class #r
df-apr 13376#r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))})
clmod 13382class LMod
cscaf 13383class Β·sf
df-lmod 13384LMod = {𝑔 ∈ Grp ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / π‘Ž][(Scalarβ€˜π‘”) / 𝑓][( ·𝑠 β€˜π‘”) / 𝑠][(Baseβ€˜π‘“) / π‘˜][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑](𝑓 ∈ Ring ∧ βˆ€π‘ž ∈ π‘˜ βˆ€π‘Ÿ ∈ π‘˜ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘€ ∈ 𝑣 (((π‘Ÿπ‘ π‘€) ∈ 𝑣 ∧ (π‘Ÿπ‘ (π‘€π‘Žπ‘₯)) = ((π‘Ÿπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘₯)) ∧ ((π‘žπ‘π‘Ÿ)𝑠𝑀) = ((π‘žπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘€))) ∧ (((π‘žπ‘‘π‘Ÿ)𝑠𝑀) = (π‘žπ‘ (π‘Ÿπ‘ π‘€)) ∧ ((1rβ€˜π‘“)𝑠𝑀) = 𝑀)))}
df-scaf 13385 Β·sf = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘”)), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯( ·𝑠 β€˜π‘”)𝑦)))
clss 13447class LSubSp
df-lssm 13448LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)})
clspn 13478class LSpan
df-lsp 13479LSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
cpsmet 13524class PsMet
cxmet 13525class ∞Met
cmet 13526class Met
cbl 13527class ball
cfbas 13528class fBas
cfg 13529class filGen
cmopn 13530class MetOpen
cmetu 13531class metUnif
df-psmet 13532PsMet = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ* β†‘π‘š (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ ((𝑦𝑑𝑦) = 0 ∧ βˆ€π‘§ ∈ π‘₯ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) +𝑒 (𝑀𝑑𝑧)))})
df-xmet 13533∞Met = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ* β†‘π‘š (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) +𝑒 (𝑀𝑑𝑧)))})
df-met 13534Met = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ β†‘π‘š (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) + (𝑀𝑑𝑧)))})
df-bl 13535ball = (𝑑 ∈ V ↦ (π‘₯ ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (π‘₯𝑑𝑦) < 𝑧}))
df-mopn 13536MetOpen = (𝑑 ∈ βˆͺ ran ∞Met ↦ (topGenβ€˜ran (ballβ€˜π‘‘)))
df-fbas 13537fBas = (𝑀 ∈ V ↦ {π‘₯ ∈ 𝒫 𝒫 𝑀 ∣ (π‘₯ β‰  βˆ… ∧ βˆ… βˆ‰ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (π‘₯ ∩ 𝒫 (𝑦 ∩ 𝑧)) β‰  βˆ…)})
df-fg 13538filGen = (𝑀 ∈ V, π‘₯ ∈ (fBasβ€˜π‘€) ↦ {𝑦 ∈ 𝒫 𝑀 ∣ (π‘₯ ∩ 𝒫 𝑦) β‰  βˆ…})
df-metu 13539metUnif = (𝑑 ∈ βˆͺ ran PsMet ↦ ((dom dom 𝑑 Γ— dom dom 𝑑)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝑑 β€œ (0[,)π‘Ž)))))
ccnfld 13540class β„‚fld
df-icnfld 13541β„‚fld = ({⟨(Baseβ€˜ndx), β„‚βŸ©, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Β· ⟩} βˆͺ {⟨(*π‘Ÿβ€˜ndx), βˆ—βŸ©})
czring 13565class β„€ring
df-zring 13566β„€ring = (β„‚fld β†Ύs β„€)
ctop 13582class Top
df-top 13583Top = {π‘₯ ∣ (βˆ€π‘¦ ∈ 𝒫 π‘₯βˆͺ 𝑦 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (𝑦 ∩ 𝑧) ∈ π‘₯)}
ctopon 13595class TopOn
df-topon 13596TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗})
ctps 13615class TopSp
df-topsp 13616TopSp = {𝑓 ∣ (TopOpenβ€˜π‘“) ∈ (TopOnβ€˜(Baseβ€˜π‘“))}
ctb 13627class TopBases
df-bases 13628TopBases = {π‘₯ ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (𝑦 ∩ 𝑧) βŠ† βˆͺ (π‘₯ ∩ 𝒫 (𝑦 ∩ 𝑧))}
ccld 13677class Clsd
cnt 13678class int
ccl 13679class cls
df-cld 13680Clsd = (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ (βˆͺ 𝑗 βˆ– π‘₯) ∈ 𝑗})
df-ntr 13681int = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ βˆͺ (𝑗 ∩ 𝒫 π‘₯)))
df-cls 13682cls = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ ∩ {𝑦 ∈ (Clsdβ€˜π‘—) ∣ π‘₯ βŠ† 𝑦}))
cnei 13723class nei
df-nei 13724nei = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑦)}))
ccn 13770class Cn
ccnp 13771class CnP
clm 13772class ⇝𝑑
df-cn 13773 Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ β†‘π‘š βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗})
df-cnp 13774 CnP = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑓 ∈ (βˆͺ π‘˜ β†‘π‘š βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ ((π‘“β€˜π‘₯) ∈ 𝑦 β†’ βˆƒπ‘” ∈ 𝑗 (π‘₯ ∈ 𝑔 ∧ (𝑓 β€œ 𝑔) βŠ† 𝑦))}))
df-lm 13775⇝𝑑 = (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
ctx 13837class Γ—t
df-tx 13838 Γ—t = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))))
chmeo 13885class Homeo
df-hmeo 13886Homeo = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (𝑗 Cn π‘˜) ∣ ◑𝑓 ∈ (π‘˜ Cn 𝑗)})
cxms 13921class ∞MetSp
cms 13922class MetSp
ctms 13923class toMetSp
df-xms 13924∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpenβ€˜π‘“) = (MetOpenβ€˜((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))))}
df-ms 13925MetSp = {𝑓 ∈ ∞MetSp ∣ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“))}
df-tms 13926toMetSp = (𝑑 ∈ βˆͺ ran ∞Met ↦ ({⟨(Baseβ€˜ndx), dom dom π‘‘βŸ©, ⟨(distβ€˜ndx), π‘‘βŸ©} sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π‘‘)⟩))
ccncf 14142class –cnβ†’
df-cncf 14143–cnβ†’ = (π‘Ž ∈ 𝒫 β„‚, 𝑏 ∈ 𝒫 β„‚ ↦ {𝑓 ∈ (𝑏 β†‘π‘š π‘Ž) ∣ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ π‘Ž ((absβ€˜(π‘₯ βˆ’ 𝑦)) < 𝑑 β†’ (absβ€˜((π‘“β€˜π‘₯) βˆ’ (π‘“β€˜π‘¦))) < 𝑒)})
climc 14208class limβ„‚
cdv 14209class D
df-limced 14210 limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
df-dvap 14211 D = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((MetOpenβ€˜(abs ∘ βˆ’ )) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ {𝑀 ∈ dom 𝑓 ∣ 𝑀 # π‘₯} ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
clog 14362class log
ccxp 14363class ↑𝑐
df-relog 14364log = β—‘(exp β†Ύ ℝ)
df-rpcxp 14365↑𝑐 = (π‘₯ ∈ ℝ+, 𝑦 ∈ β„‚ ↦ (expβ€˜(𝑦 Β· (logβ€˜π‘₯))))
clogb 14446class logb
df-logb 14447 logb = (π‘₯ ∈ (β„‚ βˆ– {0, 1}), 𝑦 ∈ (β„‚ βˆ– {0}) ↦ ((logβ€˜π‘¦) / (logβ€˜π‘₯)))
clgs 14483class /L
df-lgs 14484 /L = (π‘Ž ∈ β„€, 𝑛 ∈ β„€ ↦ if(𝑛 = 0, if((π‘Žβ†‘2) = 1, 1, 0), (if((𝑛 < 0 ∧ π‘Ž < 0), -1, 1) Β· (seq1( Β· , (π‘š ∈ β„• ↦ if(π‘š ∈ β„™, (if(π‘š = 2, if(2 βˆ₯ π‘Ž, 0, if((π‘Ž mod 8) ∈ {1, 7}, 1, -1)), ((((π‘Žβ†‘((π‘š βˆ’ 1) / 2)) + 1) mod π‘š) βˆ’ 1))↑(π‘š pCnt 𝑛)), 1)))β€˜(absβ€˜π‘›)))))
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 14630wff 𝐴 DECIDin 𝐡
df-dcin 14631(𝐴 DECIDin 𝐡 ↔ βˆ€π‘₯ ∈ 𝐡 DECID π‘₯ ∈ 𝐴)
wbd 14649wff BOUNDED πœ‘
ax-bd0 14650(πœ‘ ↔ πœ“)    β‡’   (BOUNDED πœ‘ β†’ BOUNDED πœ“)
ax-bdim 14651BOUNDED πœ‘    &   BOUNDED πœ“    β‡’   BOUNDED (πœ‘ β†’ πœ“)
ax-bdan 14652BOUNDED πœ‘    &   BOUNDED πœ“    β‡’   BOUNDED (πœ‘ ∧ πœ“)
ax-bdor 14653BOUNDED πœ‘    &   BOUNDED πœ“    β‡’   BOUNDED (πœ‘ ∨ πœ“)
ax-bdn 14654BOUNDED πœ‘    β‡’   BOUNDED Β¬ πœ‘
ax-bdal 14655BOUNDED πœ‘    β‡’   BOUNDED βˆ€π‘₯ ∈ 𝑦 πœ‘
ax-bdex 14656BOUNDED πœ‘    β‡’   BOUNDED βˆƒπ‘₯ ∈ 𝑦 πœ‘
ax-bdeq 14657BOUNDED π‘₯ = 𝑦
ax-bdel 14658BOUNDED π‘₯ ∈ 𝑦
ax-bdsb 14659BOUNDED πœ‘    β‡’   BOUNDED [𝑦 / π‘₯]πœ‘
wbdc 14677wff BOUNDED 𝐴
df-bdc 14678(BOUNDED 𝐴 ↔ βˆ€π‘₯BOUNDED π‘₯ ∈ 𝐴)
ax-bdsep 14721BOUNDED πœ‘    β‡’   βˆ€π‘Žβˆƒπ‘βˆ€π‘₯(π‘₯ ∈ 𝑏 ↔ (π‘₯ ∈ π‘Ž ∧ πœ‘))
ax-bj-d0cl 14761BOUNDED πœ‘    β‡’   DECID πœ‘
wind 14763wff Ind 𝐴
df-bj-ind 14764(Ind 𝐴 ↔ (βˆ… ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 suc π‘₯ ∈ 𝐴))
ax-infvn 14778βˆƒπ‘₯(Ind π‘₯ ∧ βˆ€π‘¦(Ind 𝑦 β†’ π‘₯ βŠ† 𝑦))
ax-bdsetind 14805BOUNDED πœ‘    β‡’   (βˆ€π‘Ž(βˆ€π‘¦ ∈ π‘Ž [𝑦 / π‘Ž]πœ‘ β†’ πœ‘) β†’ βˆ€π‘Žπœ‘)
ax-inf2 14813βˆƒπ‘Žβˆ€π‘₯(π‘₯ ∈ π‘Ž ↔ (π‘₯ = βˆ… ∨ βˆƒπ‘¦ ∈ π‘Ž π‘₯ = suc 𝑦))
ax-strcoll 14819βˆ€π‘Ž(βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦πœ‘ β†’ βˆƒπ‘(βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 πœ‘ ∧ βˆ€π‘¦ ∈ 𝑏 βˆƒπ‘₯ ∈ π‘Ž πœ‘))
ax-sscoll 14824βˆ€π‘Žβˆ€π‘βˆƒπ‘βˆ€π‘§(βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 πœ‘ β†’ βˆƒπ‘‘ ∈ 𝑐 (βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑑 πœ‘ ∧ βˆ€π‘¦ ∈ 𝑑 βˆƒπ‘₯ ∈ π‘Ž πœ‘))
ax-ddkcomp 14826(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 < π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ < 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ < 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 < 𝑦))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 𝑦 ≀ π‘₯ ∧ ((𝐡 ∈ 𝑅 ∧ βˆ€π‘¦ ∈ 𝐴 𝑦 ≀ 𝐡) β†’ π‘₯ ≀ 𝐡)))
walsi 14909wff βˆ€!π‘₯(πœ‘ β†’ πœ“)
walsc 14910wff βˆ€!π‘₯ ∈ π΄πœ‘
df-alsi 14911(βˆ€!π‘₯(πœ‘ β†’ πœ“) ↔ (βˆ€π‘₯(πœ‘ β†’ πœ“) ∧ βˆƒπ‘₯πœ‘))
df-alsc 14912(βˆ€!π‘₯ ∈ π΄πœ‘ ↔ (βˆ€π‘₯ ∈ 𝐴 πœ‘ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴))
  Copyright terms: Public domain W3C validator