ILE Home Intuitionistic Logic Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ 𝜑
wi 4wff (𝜑𝜓)
ax-mp 5𝜑    &   (𝜑𝜓)       𝜓
ax-1 6(𝜑 → (𝜓𝜑))
ax-2 7((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
wa 103wff (𝜑𝜓)
wb 104wff (𝜑𝜓)
ax-ia1 105((𝜑𝜓) → 𝜑)
ax-ia2 106((𝜑𝜓) → 𝜓)
ax-ia3 107(𝜑 → (𝜓 → (𝜑𝜓)))
df-bi 116(((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
ax-in1 604((𝜑 → ¬ 𝜑) → ¬ 𝜑)
ax-in2 605𝜑 → (𝜑𝜓))
wo 698wff (𝜑𝜓)
ax-io 699(((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
wstab 816wff STAB 𝜑
df-stab 817(STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
wdc 820wff DECID 𝜑
df-dc 821(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
w3o 962wff (𝜑𝜓𝜒)
w3a 963wff (𝜑𝜓𝜒)
df-3or 964((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
df-3an 965((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
wal 1330wff 𝑥𝜑
cv 1331class 𝑥
wceq 1332wff 𝐴 = 𝐵
wtru 1333wff
df-tru 1335(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
wfal 1337wff
df-fal 1338(⊥ ↔ ¬ ⊤)
wxo 1354wff (𝜑𝜓)
df-xor 1355((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
ax-5 1424(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-7 1425(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-gen 1426𝜑       𝑥𝜑
wnf 1437wff 𝑥𝜑
df-nf 1438(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
wex 1469wff 𝑥𝜑
ax-ie1 1470(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-ie2 1471(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
ax-8 1481(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
ax-10 1482(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-11 1483(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
ax-i12 1484(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-bndl 1486(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-4 1487(∀𝑥𝜑𝜑)
ax-17 1503(𝜑 → ∀𝑥𝜑)
ax-i9 1507𝑥 𝑥 = 𝑦
ax-ial 1511(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-i5r 1512((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))
ax-10o 1693(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
wsb 1739wff [𝑦 / 𝑥]𝜑
df-sb 1740([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
ax-16 1791(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
ax-11o 1800(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
weu 2003wff ∃!𝑥𝜑
wmo 2004wff ∃*𝑥𝜑
df-eu 2006(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
df-mo 2007(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
wcel 2125wff 𝐴𝐵
ax-13 2127(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
ax-14 2128(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
ax-ext 2136(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
cab 2140class {𝑥𝜑}
df-clab 2141(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
df-cleq 2147(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-clel 2150(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
wnfc 2283wff 𝑥𝐴
df-nfc 2285(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
wne 2324wff 𝐴𝐵
df-ne 2325(𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
wnel 2419wff 𝐴𝐵
df-nel 2420(𝐴𝐵 ↔ ¬ 𝐴𝐵)
wral 2432wff 𝑥𝐴 𝜑
wrex 2433wff 𝑥𝐴 𝜑
wreu 2434wff ∃!𝑥𝐴 𝜑
wrmo 2435wff ∃*𝑥𝐴 𝜑
crab 2436class {𝑥𝐴𝜑}
df-ral 2437(∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
df-rex 2438(∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
df-reu 2439(∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
df-rmo 2440(∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
df-rab 2441{𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
cvv 2709class V
df-v 2711V = {𝑥𝑥 = 𝑥}
wcdeq 2916wff CondEq(𝑥 = 𝑦𝜑)
df-cdeq 2917(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
wsbc 2933wff [𝐴 / 𝑥]𝜑
df-sbc 2934([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
csb 3027class 𝐴 / 𝑥𝐵
df-csb 3028𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
cdif 3095class (𝐴𝐵)
cun 3096class (𝐴𝐵)
cin 3097class (𝐴𝐵)
wss 3098wff 𝐴𝐵
df-dif 3100(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
df-un 3102(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-in 3104(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-ss 3111(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
c0 3390class
df-nul 3391∅ = (V ∖ V)
cif 3501class if(𝜑, 𝐴, 𝐵)
df-if 3502if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
cpw 3539class 𝒫 𝐴
df-pw 3541𝒫 𝐴 = {𝑥𝑥𝐴}
csn 3556class {𝐴}
cpr 3557class {𝐴, 𝐵}
ctp 3558class {𝐴, 𝐵, 𝐶}
cop 3559class 𝐴, 𝐵
cotp 3560class 𝐴, 𝐵, 𝐶
df-sn 3562{𝐴} = {𝑥𝑥 = 𝐴}
df-pr 3563{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
df-tp 3564{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
df-op 3565𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
df-ot 3566𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
cuni 3768class 𝐴
df-uni 3769 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
cint 3803class 𝐴
df-int 3804 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
ciun 3845class 𝑥𝐴 𝐵
ciin 3846class 𝑥𝐴 𝐵
df-iun 3847 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
df-iin 3848 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
wdisj 3938wff Disj 𝑥𝐴 𝐵
df-disj 3939(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
wbr 3961wff 𝐴𝑅𝐵
df-br 3962(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
copab 4020class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
cmpt 4021class (𝑥𝐴𝐵)
df-opab 4022{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
df-mpt 4023(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
wtr 4058wff Tr 𝐴
df-tr 4059(Tr 𝐴 𝐴𝐴)
ax-coll 4075𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
ax-sep 4078𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
ax-nul 4086𝑥𝑦 ¬ 𝑦𝑥
ax-pow 4130𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
wem 4150wff EXMID
df-exmid 4151(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
ax-pr 4164𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
cep 4242class E
cid 4243class I
df-eprel 4244 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
df-id 4248 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
wpo 4249wff 𝑅 Po 𝐴
wor 4250wff 𝑅 Or 𝐴
df-po 4251(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
df-iso 4252(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
wfrfor 4282wff FrFor 𝑅𝐴𝑆
wfr 4283wff 𝑅 Fr 𝐴
wse 4284wff 𝑅 Se 𝐴
wwe 4285wff 𝑅 We 𝐴
df-frfor 4286( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
df-frind 4287(𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
df-se 4288(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
df-wetr 4289(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
word 4317wff Ord 𝐴
con0 4318class On
wlim 4319wff Lim 𝐴
csuc 4320class suc 𝐴
df-iord 4321(Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
df-on 4323On = {𝑥 ∣ Ord 𝑥}
df-ilim 4324(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
df-suc 4326suc 𝐴 = (𝐴 ∪ {𝐴})
ax-un 4388𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
ax-setind 4490(∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-iinf 4541𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
com 4543class ω
df-iom 4544ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
cxp 4577class (𝐴 × 𝐵)
ccnv 4578class 𝐴
cdm 4579class dom 𝐴
crn 4580class ran 𝐴
cres 4581class (𝐴𝐵)
cima 4582class (𝐴𝐵)
ccom 4583class (𝐴𝐵)
wrel 4584wff Rel 𝐴
df-xp 4585(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
df-rel 4586(Rel 𝐴𝐴 ⊆ (V × V))
df-cnv 4587𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
df-co 4588(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
df-dm 4589dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
df-rn 4590ran 𝐴 = dom 𝐴
df-res 4591(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
df-ima 4592(𝐴𝐵) = ran (𝐴𝐵)
cio 5126class (℩𝑥𝜑)
df-iota 5128(℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wfun 5157wff Fun 𝐴
wfn 5158wff 𝐴 Fn 𝐵
wf 5159wff 𝐹:𝐴𝐵
wf1 5160wff 𝐹:𝐴1-1𝐵
wfo 5161wff 𝐹:𝐴onto𝐵
wf1o 5162wff 𝐹:𝐴1-1-onto𝐵
cfv 5163class (𝐹𝐴)
wiso 5164wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
df-fun 5165(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
df-fn 5166(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
df-f 5167(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
df-f1 5168(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
df-fo 5169(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
df-f1o 5170(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
df-fv 5171(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
df-isom 5172(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
crio 5769class (𝑥𝐴 𝜑)
df-riota 5770(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
co 5814class (𝐴𝐹𝐵)
coprab 5815class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
cmpo 5816class (𝑥𝐴, 𝑦𝐵𝐶)
df-ov 5817(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
df-oprab 5818{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
df-mpo 5819(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
cof 6020class 𝑓 𝑅
cofr 6021class 𝑟 𝑅
df-of 6022𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
df-ofr 6023𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
c1st 6076class 1st
c2nd 6077class 2nd
df-1st 60781st = (𝑥 ∈ V ↦ dom {𝑥})
df-2nd 60792nd = (𝑥 ∈ V ↦ ran {𝑥})
ctpos 6181class tpos 𝐹
df-tpos 6182tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
wsmo 6222wff Smo 𝐴
df-smo 6223(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
crecs 6241class recs(𝐹)
df-recs 6242recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
crdg 6306class rec(𝐹, 𝐼)
df-irdg 6307rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
cfrec 6327class frec(𝐹, 𝐼)
df-frec 6328frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
c1o 6346class 1o
c2o 6347class 2o
c3o 6348class 3o
c4o 6349class 4o
coa 6350class +o
comu 6351class ·o
coei 6352class o
df-1o 63531o = suc ∅
df-2o 63542o = suc 1o
df-3o 63553o = suc 2o
df-4o 63564o = suc 3o
df-oadd 6357 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
df-omul 6358 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
df-oexpi 6359o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
wer 6466wff 𝑅 Er 𝐴
cec 6467class [𝐴]𝑅
cqs 6468class (𝐴 / 𝑅)
df-er 6469(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
df-ec 6471[𝐴]𝑅 = (𝑅 “ {𝐴})
df-qs 6475(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
cmap 6582class 𝑚
cpm 6583class pm
df-map 6584𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
df-pm 6585pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
cixp 6632class X𝑥𝐴 𝐵
df-ixp 6633X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
cen 6672class
cdom 6673class
cfn 6674class Fin
df-en 6675 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
df-dom 6676 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
df-fin 6677Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
cfi 6901class fi
df-fi 6902fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
csup 6914class sup(𝐴, 𝐵, 𝑅)
cinf 6915class inf(𝐴, 𝐵, 𝑅)
df-sup 6916sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
df-inf 6917inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
cdju 6967class (𝐴𝐵)
df-dju 6968(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
cinl 6975class inl
cinr 6976class inr
df-inl 6977inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
df-inr 6978inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
cdjucase 7013class case(𝑅, 𝑆)
df-case 7014case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
cdjud 7032class (𝑅d 𝑆)
df-djud 7033(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
xnninf 7049class
df-nninf 7050 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
comni 7056class Omni
df-omni 7057Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
cmarkov 7073class Markov
df-markov 7074Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
cwomni 7085class WOmni
df-womni 7086WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
ccrd 7093class card
df-card 7094card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
wac 7119wff CHOICE
df-ac 7120(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
wacc 7161wff CCHOICE
df-cc 7162(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
cnpi 7171class N
cpli 7172class +N
cmi 7173class ·N
clti 7174class <N
cplpq 7175class +pQ
cmpq 7176class ·pQ
cltpq 7177class <pQ
ceq 7178class ~Q
cnq 7179class Q
c1q 7180class 1Q
cplq 7181class +Q
cmq 7182class ·Q
crq 7183class *Q
cltq 7184class <Q
ceq0 7185class ~Q0
cnq0 7186class Q0
c0q0 7187class 0Q0
cplq0 7188class +Q0
cmq0 7189class ·Q0
cnp 7190class P
c1p 7191class 1P
cpp 7192class +P
cmp 7193class ·P
cltp 7194class <P
cer 7195class ~R
cnr 7196class R
c0r 7197class 0R
c1r 7198class 1R
cm1r 7199class -1R
cplr 7200class +R
cmr 7201class ·R
cltr 7202class <R
df-ni 7203N = (ω ∖ {∅})
df-pli 7204 +N = ( +o ↾ (N × N))
df-mi 7205 ·N = ( ·o ↾ (N × N))
df-lti 7206 <N = ( E ∩ (N × N))
df-plpq 7243 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-mpq 7244 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-ltpq 7245 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
df-enq 7246 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
df-nqqs 7247Q = ((N × N) / ~Q )
df-plqqs 7248 +Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ +pQ𝑢, 𝑓⟩)] ~Q ))}
df-mqqs 7249 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
df-1nqqs 72501Q = [⟨1o, 1o⟩] ~Q
df-rq 7251*Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
df-ltnqqs 7252 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
df-enq0 7323 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
df-nq0 7324Q0 = ((ω × N) / ~Q0 )
df-0nq0 73250Q0 = [⟨∅, 1o⟩] ~Q0
df-plq0 7326 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-mq0 7327 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-inp 7365P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
df-i1p 73661P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
df-iplp 7367 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
df-imp 7368 ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
df-iltp 7369<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
df-enr 7625 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
df-nr 7626R = ((P × P) / ~R )
df-plr 7627 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 7628 ·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
df-ltr 7629 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
df-0r 76300R = [⟨1P, 1P⟩] ~R
df-1r 76311R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 7632-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 7709class
cr 7710class
cc0 7711class 0
c1 7712class 1
ci 7713class i
caddc 7714class +
cltrr 7715class <
cmul 7716class ·
df-c 7717ℂ = (R × R)
df-0 77180 = ⟨0R, 0R
df-1 77191 = ⟨1R, 0R
df-i 7720i = ⟨0R, 1R
df-r 7721ℝ = (R × {0R})
df-add 7722 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
df-mul 7723 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
df-lt 7724 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
ax-cnex 7802ℂ ∈ V
ax-resscn 7803ℝ ⊆ ℂ
ax-1cn 78041 ∈ ℂ
ax-1re 78051 ∈ ℝ
ax-icn 7806i ∈ ℂ
ax-addcl 7807((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
ax-addrcl 7808((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
ax-mulcl 7809((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
ax-mulrcl 7810((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
ax-addcom 7811((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
ax-mulcom 7812((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
ax-addass 7813((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-mulass 7814((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-distr 7815((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-i2m1 7816((i · i) + 1) = 0
ax-0lt1 78170 < 1
ax-1rid 7818(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
ax-0id 7819(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
ax-rnegex 7820(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
ax-precex 7821((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
ax-cnre 7822(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
ax-pre-ltirr 7823(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
ax-pre-ltwlin 7824((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
ax-pre-lttrn 7825((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
ax-pre-apti 7826((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
ax-pre-ltadd 7827((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
ax-pre-mulgt0 7828((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
ax-pre-mulext 7829((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
ax-arch 7830(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
ax-caucvg 7831𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
ax-pre-suploc 7832(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
ax-addf 7833 + :(ℂ × ℂ)⟶ℂ
ax-mulf 7834 · :(ℂ × ℂ)⟶ℂ
cpnf 7888class +∞
cmnf 7889class -∞
cxr 7890class *
clt 7891class <
cle 7892class
df-pnf 7893+∞ = 𝒫
df-mnf 7894-∞ = 𝒫 +∞
df-xr 7895* = (ℝ ∪ {+∞, -∞})
df-ltxr 7896 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
df-le 7897 ≤ = ((ℝ* × ℝ*) ∖ < )
cmin 8025class
cneg 8026class -𝐴
df-sub 8027 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
df-neg 8028-𝐴 = (0 − 𝐴)
creap 8428class #
df-reap 8429 # = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
cap 8435class #
df-ap 8436 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
cdiv 8524class /
df-div 8525 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
cn 8812class
df-inn 8813ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
c2 8863class 2
c3 8864class 3
c4 8865class 4
c5 8866class 5
c6 8867class 6
c7 8868class 7
c8 8869class 8
c9 8870class 9
df-2 88712 = (1 + 1)
df-3 88723 = (2 + 1)
df-4 88734 = (3 + 1)
df-5 88745 = (4 + 1)
df-6 88756 = (5 + 1)
df-7 88767 = (6 + 1)
df-8 88778 = (7 + 1)
df-9 88789 = (8 + 1)
cn0 9069class 0
df-n0 90700 = (ℕ ∪ {0})
cxnn0 9132class 0*
df-xnn0 91330* = (ℕ0 ∪ {+∞})
cz 9146class
df-z 9147ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
cdc 9274class 𝐴𝐵
df-dec 9275𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
cuz 9418class
df-uz 9419 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
cq 9506class
df-q 9507ℚ = ( / “ (ℤ × ℕ))
crp 9538class +
df-rp 9539+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
cxne 9654class -𝑒𝐴
cxad 9655class +𝑒
cxmu 9656class ·e
df-xneg 9657-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 9658 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
df-xmul 9659 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
cioo 9770class (,)
cioc 9771class (,]
cico 9772class [,)
cicc 9773class [,]
df-ioo 9774(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
df-ioc 9775(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
df-ico 9776[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
df-icc 9777[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
cfz 9890class ...
df-fz 9891... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
cfzo 10019class ..^
df-fzo 10020..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
cfl 10145class
cceil 10146class
df-fl 10147⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
df-ceil 10148⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
cmo 10199class mod
df-mod 10200 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
cseq 10322class seq𝑀( + , 𝐹)
df-seqfrec 10323seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
cexp 10396class
df-exp 10397↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
cfa 10576class !
df-fac 10577! = ({⟨0, 1⟩} ∪ seq1( · , I ))
cbc 10598class C
df-bc 10599C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
chash 10626class
df-ihash 10627♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
cshi 10691class shift
df-shft 10692 shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
ccj 10716class
cre 10717class
cim 10718class
df-cj 10719∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
df-re 10720ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
df-im 10721ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
csqrt 10873class
cabs 10874class abs
df-rsqrt 10875√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
df-abs 10876abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
cli 11152class
df-clim 11153 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
csu 11227class Σ𝑘𝐴 𝐵
df-sumdc 11228Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
cprod 11424class 𝑘𝐴 𝐵
df-proddc 11425𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
ce 11516class exp
ceu 11517class e
csin 11518class sin
ccos 11519class cos
ctan 11520class tan
cpi 11521class π
df-ef 11522exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
df-e 11523e = (exp‘1)
df-sin 11524sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
df-cos 11525cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
df-tan 11526tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
df-pi 11527π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
ctau 11648class τ
df-tau 11649τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
cdvds 11660class
df-dvds 11661 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
cgcd 11802class gcd
df-gcd 11803 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
clcm 11909class lcm
df-lcm 11910 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
cprime 11956class
df-prm 11957ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
cnumer 12027class numer
cdenom 12028class denom
df-numer 12029numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
df-denom 12030denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
cphi 12054class ϕ
df-phi 12055ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
cstr 12133class Struct
cnx 12134class ndx
csts 12135class sSet
cslot 12136class Slot 𝐴
cbs 12137class Base
cress 12138class s
df-struct 12139 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
df-ndx 12140ndx = ( I ↾ ℕ)
df-slot 12141Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
df-base 12143Base = Slot 1
df-sets 12144 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
df-ress 12145s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
cplusg 12199class +g
cmulr 12200class .r
cstv 12201class *𝑟
csca 12202class Scalar
cvsca 12203class ·𝑠
cip 12204class ·𝑖
cts 12205class TopSet
cple 12206class le
coc 12207class oc
cds 12208class dist
cunif 12209class UnifSet
chom 12210class Hom
cco 12211class comp
df-plusg 12212+g = Slot 2
df-mulr 12213.r = Slot 3
df-starv 12214*𝑟 = Slot 4
df-sca 12215Scalar = Slot 5
df-vsca 12216 ·𝑠 = Slot 6
df-ip 12217·𝑖 = Slot 8
df-tset 12218TopSet = Slot 9
df-ple 12219le = Slot 10
df-ocomp 12220oc = Slot 11
df-ds 12221dist = Slot 12
df-unif 12222UnifSet = Slot 13
df-hom 12223Hom = Slot 14
df-cco 12224comp = Slot 15
crest 12298class t
ctopn 12299class TopOpen
df-rest 12300t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
df-topn 12301TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
ctg 12313class topGen
cpt 12314class t
c0g 12315class 0g
cgsu 12316class Σg
df-0g 123170g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
df-gsum 12318 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
df-topgen 12319topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
df-pt 12320t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
cprds 12321class Xs
cpws 12322class s
df-prds 12323Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
df-pws 12325s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
cpsmet 12326class PsMet
cxmet 12327class ∞Met
cmet 12328class Met
cbl 12329class ball
cfbas 12330class fBas
cfg 12331class filGen
cmopn 12332class MetOpen
cmetu 12333class metUnif
df-psmet 12334PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-xmet 12335∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-met 12336Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
df-bl 12337ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
df-mopn 12338MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
df-fbas 12339fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
df-fg 12340filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
df-metu 12341metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
ctop 12342class Top
df-top 12343Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
ctopon 12355class TopOn
df-topon 12356TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
ctps 12375class TopSp
df-topsp 12376TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
ctb 12387class TopBases
df-bases 12388TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
ccld 12439class Clsd
cnt 12440class int
ccl 12441class cls
df-cld 12442Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
df-ntr 12443int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
df-cls 12444cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
cnei 12485class nei
df-nei 12486nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
ccn 12532class Cn
ccnp 12533class CnP
clm 12534class 𝑡
df-cn 12535 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
df-cnp 12536 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
df-lm 12537𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
ctx 12599class ×t
df-tx 12600 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
chmeo 12647class Homeo
df-hmeo 12648Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
cxms 12683class ∞MetSp
cms 12684class MetSp
ctms 12685class toMetSp
df-xms 12686∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
df-ms 12687MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
df-tms 12688toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
ccncf 12904class cn
df-cncf 12905cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
climc 12970class lim
cdv 12971class D
df-limced 12972 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
df-dvap 12973 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
clog 13124class log
ccxp 13125class 𝑐
df-relog 13126log = (exp ↾ ℝ)
df-rpcxp 13127𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
clogb 13207class logb
df-logb 13208 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 13313wff 𝐴 DECIDin 𝐵
df-dcin 13314(𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
wbd 13333wff BOUNDED 𝜑
ax-bd0 13334(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
ax-bdim 13335BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdan 13336BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdor 13337BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdn 13338BOUNDED 𝜑       BOUNDED ¬ 𝜑
ax-bdal 13339BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdex 13340BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdeq 13341BOUNDED 𝑥 = 𝑦
ax-bdel 13342BOUNDED 𝑥𝑦
ax-bdsb 13343BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
wbdc 13361wff BOUNDED 𝐴
df-bdc 13362(BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
ax-bdsep 13405BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
ax-bj-d0cl 13445BOUNDED 𝜑       DECID 𝜑
wind 13447wff Ind 𝐴
df-bj-ind 13448(Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
ax-infvn 13462𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))
ax-bdsetind 13489BOUNDED 𝜑       (∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-inf2 13497𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
ax-strcoll 13503𝑎(∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
ax-sscoll 13508𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
ax-ddkcomp 13510(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 𝑦𝑥 ∧ ((𝐵𝑅 ∧ ∀𝑦𝐴 𝑦𝐵) → 𝑥𝐵)))
walsi 13593wff ∀!𝑥(𝜑𝜓)
walsc 13594wff ∀!𝑥𝐴𝜑
df-alsi 13595(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
df-alsc 13596(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
  Copyright terms: Public domain W3C validator