List of Syntax, Axioms (ax-) and
Definitions (df-)|
Ref | Expression (see link for any distinct variable requirements)
|
| wn 3 | wff ¬ 𝜑 |
| wi 4 | wff (𝜑 → 𝜓) |
| ax-mp 5 | ⊢ 𝜑
& ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 |
| ax-1 6 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| ax-2 7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| wa 104 | wff (𝜑 ∧ 𝜓) |
| wb 105 | wff (𝜑 ↔ 𝜓) |
| ax-ia1 106 | ⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
| ax-ia2 107 | ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| ax-ia3 108 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| df-bi 117 | ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) |
| ax-in1 615 | ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) |
| ax-in2 616 | ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) |
| wo 710 | wff (𝜑 ∨ 𝜓) |
| ax-io 711 | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
| wstab 832 | wff STAB 𝜑 |
| df-stab 833 | ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) |
| wdc 836 | wff DECID 𝜑 |
| df-dc 837 | ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
| w3o 980 | wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| w3a 981 | wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| df-3or 982 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| df-3an 983 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| wal 1371 | wff ∀𝑥𝜑 |
| cv 1372 | class 𝑥 |
| wceq 1373 | wff 𝐴 = 𝐵 |
| wtru 1374 | wff ⊤ |
| df-tru 1376 | ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
| wfal 1378 | wff ⊥ |
| df-fal 1379 | ⊢ (⊥ ↔ ¬
⊤) |
| wxo 1395 | wff (𝜑 ⊻ 𝜓) |
| df-xor 1396 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| ax-5 1471 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| ax-7 1472 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| ax-gen 1473 | ⊢ 𝜑 ⇒ ⊢ ∀𝑥𝜑 |
| wnf 1484 | wff Ⅎ𝑥𝜑 |
| df-nf 1485 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| wex 1516 | wff ∃𝑥𝜑 |
| ax-ie1 1517 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| ax-ie2 1518 | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| ax-8 1528 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| ax-10 1529 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| ax-11 1530 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| ax-i12 1531 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| ax-bndl 1533 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| ax-4 1534 | ⊢ (∀𝑥𝜑 → 𝜑) |
| ax-17 1550 | ⊢ (𝜑 → ∀𝑥𝜑) |
| ax-i9 1554 | ⊢ ∃𝑥 𝑥 = 𝑦 |
| ax-ial 1558 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| ax-i5r 1559 | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| ax-10o 1740 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
| wsb 1786 | wff [𝑦 / 𝑥]𝜑 |
| df-sb 1787 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| ax-16 1838 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| ax-11o 1847 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| weu 2055 | wff ∃!𝑥𝜑 |
| wmo 2056 | wff ∃*𝑥𝜑 |
| df-eu 2058 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| df-mo 2059 | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| wcel 2177 | wff 𝐴 ∈ 𝐵 |
| ax-13 2179 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
| ax-14 2180 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
| ax-ext 2188 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
| cab 2192 | class {𝑥 ∣ 𝜑} |
| df-clab 2193 | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
| df-cleq 2199 | ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| df-clel 2202 | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| wnfc 2336 | wff Ⅎ𝑥𝐴 |
| df-nfc 2338 | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| wne 2377 | wff 𝐴 ≠ 𝐵 |
| df-ne 2378 | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
| wnel 2472 | wff 𝐴 ∉ 𝐵 |
| df-nel 2473 | ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) |
| wral 2485 | wff ∀𝑥 ∈ 𝐴 𝜑 |
| wrex 2486 | wff ∃𝑥 ∈ 𝐴 𝜑 |
| wreu 2487 | wff ∃!𝑥 ∈ 𝐴 𝜑 |
| wrmo 2488 | wff ∃*𝑥 ∈ 𝐴 𝜑 |
| crab 2489 | class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| df-ral 2490 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| df-rex 2491 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| df-reu 2492 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| df-rmo 2493 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| df-rab 2494 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| cvv 2773 | class V |
| df-v 2775 | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
| wcdeq 2982 | wff CondEq(𝑥 = 𝑦 → 𝜑) |
| df-cdeq 2983 | ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
| wsbc 2999 | wff [𝐴 / 𝑥]𝜑 |
| df-sbc 3000 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| csb 3094 | class ⦋𝐴 / 𝑥⦌𝐵 |
| df-csb 3095 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| cdif 3164 | class (𝐴 ∖ 𝐵) |
| cun 3165 | class (𝐴 ∪ 𝐵) |
| cin 3166 | class (𝐴 ∩ 𝐵) |
| wss 3167 | wff 𝐴 ⊆ 𝐵 |
| df-dif 3169 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} |
| df-un 3171 | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| df-in 3173 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| df-ss 3180 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| c0 3461 | class ∅ |
| df-nul 3462 | ⊢ ∅ = (V ∖ V) |
| cif 3572 | class if(𝜑, 𝐴, 𝐵) |
| df-if 3573 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| cpw 3617 | class 𝒫 𝐴 |
| df-pw 3619 | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| csn 3634 | class {𝐴} |
| cpr 3635 | class {𝐴, 𝐵} |
| ctp 3636 | class {𝐴, 𝐵, 𝐶} |
| cop 3637 | class 〈𝐴, 𝐵〉 |
| cotp 3638 | class 〈𝐴, 𝐵, 𝐶〉 |
| df-sn 3640 | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| df-pr 3641 | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| df-tp 3642 | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| df-op 3643 | ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} |
| df-ot 3644 | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| cuni 3852 | class ∪
𝐴 |
| df-uni 3853 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
| cint 3887 | class ∩
𝐴 |
| df-int 3888 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| ciun 3929 | class ∪ 𝑥 ∈ 𝐴 𝐵 |
| ciin 3930 | class ∩ 𝑥 ∈ 𝐴 𝐵 |
| df-iun 3931 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| df-iin 3932 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| wdisj 4023 | wff Disj 𝑥 ∈ 𝐴 𝐵 |
| df-disj 4024 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| wbr 4047 | wff 𝐴𝑅𝐵 |
| df-br 4048 | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| copab 4108 | class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| cmpt 4109 | class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| df-opab 4110 | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| df-mpt 4111 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| wtr 4146 | wff Tr 𝐴 |
| df-tr 4147 | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| ax-coll 4163 | ⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| ax-sep 4166 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| ax-nul 4174 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| ax-pow 4222 | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| wem 4242 | wff
EXMID |
| df-exmid 4243 | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥)) |
| ax-pr 4257 | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
| cep 4338 | class E |
| cid 4339 | class I |
| df-eprel 4340 | ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} |
| df-id 4344 | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| wpo 4345 | wff 𝑅 Po 𝐴 |
| wor 4346 | wff 𝑅 Or 𝐴 |
| df-po 4347 | ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| df-iso 4348 | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| wfrfor 4378 | wff FrFor 𝑅𝐴𝑆 |
| wfr 4379 | wff 𝑅 Fr 𝐴 |
| wse 4380 | wff 𝑅 Se 𝐴 |
| wwe 4381 | wff 𝑅 We 𝐴 |
| df-frfor 4382 | ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) |
| df-frind 4383 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) |
| df-se 4384 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| df-wetr 4385 | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| word 4413 | wff Ord 𝐴 |
| con0 4414 | class On |
| wlim 4415 | wff Lim 𝐴 |
| csuc 4416 | class suc 𝐴 |
| df-iord 4417 | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
| df-on 4419 | ⊢ On = {𝑥 ∣ Ord 𝑥} |
| df-ilim 4420 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
| df-suc 4422 | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| ax-un 4484 | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| ax-setind 4589 | ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) |
| ax-iinf 4640 | ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| com 4642 | class ω |
| df-iom 4643 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| cxp 4677 | class (𝐴 × 𝐵) |
| ccnv 4678 | class ◡𝐴 |
| cdm 4679 | class dom 𝐴 |
| crn 4680 | class ran 𝐴 |
| cres 4681 | class (𝐴 ↾ 𝐵) |
| cima 4682 | class (𝐴 “ 𝐵) |
| ccom 4683 | class (𝐴 ∘ 𝐵) |
| wrel 4684 | wff Rel 𝐴 |
| df-xp 4685 | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| df-rel 4686 | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| df-cnv 4687 | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| df-co 4688 | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| df-dm 4689 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| df-rn 4690 | ⊢ ran 𝐴 = dom ◡𝐴 |
| df-res 4691 | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| df-ima 4692 | ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) |
| cio 5235 | class (℩𝑥𝜑) |
| df-iota 5237 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
| wfun 5270 | wff Fun 𝐴 |
| wfn 5271 | wff 𝐴 Fn 𝐵 |
| wf 5272 | wff 𝐹:𝐴⟶𝐵 |
| wf1 5273 | wff 𝐹:𝐴–1-1→𝐵 |
| wfo 5274 | wff 𝐹:𝐴–onto→𝐵 |
| wf1o 5275 | wff 𝐹:𝐴–1-1-onto→𝐵 |
| cfv 5276 | class (𝐹‘𝐴) |
| wiso 5277 | wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| df-fun 5278 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
| df-fn 5279 | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| df-f 5280 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| df-f1 5281 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
| df-fo 5282 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| df-f1o 5283 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
| df-fv 5284 | ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) |
| df-isom 5285 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| crio 5905 | class (℩𝑥 ∈ 𝐴 𝜑) |
| df-riota 5906 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| co 5951 | class (𝐴𝐹𝐵) |
| coprab 5952 | class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| cmpo 5953 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| df-ov 5954 | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
| df-oprab 5955 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| df-mpo 5956 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| cof 6163 | class ∘𝑓
𝑅 |
| cofr 6164 | class ∘𝑟
𝑅 |
| df-of 6165 | ⊢ ∘𝑓
𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| df-ofr 6166 | ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| c1st 6231 | class 1st |
| c2nd 6232 | class 2nd |
| df-1st 6233 | ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
| df-2nd 6234 | ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
| ctpos 6337 | class tpos 𝐹 |
| df-tpos 6338 | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| wsmo 6378 | wff Smo 𝐴 |
| df-smo 6379 | ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
| crecs 6397 | class recs(𝐹) |
| df-recs 6398 | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| crdg 6462 | class rec(𝐹, 𝐼) |
| df-irdg 6463 | ⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
| cfrec 6483 | class frec(𝐹, 𝐼) |
| df-frec 6484 | ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
| c1o 6502 | class 1o |
| c2o 6503 | class 2o |
| c3o 6504 | class 3o |
| c4o 6505 | class 4o |
| coa 6506 | class +o |
| comu 6507 | class
·o |
| coei 6508 | class
↑o |
| df-1o 6509 | ⊢ 1o = suc
∅ |
| df-2o 6510 | ⊢ 2o = suc
1o |
| df-3o 6511 | ⊢ 3o = suc
2o |
| df-4o 6512 | ⊢ 4o = suc
3o |
| df-oadd 6513 | ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) |
| df-omul 6514 | ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
| df-oexpi 6515 | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| wer 6624 | wff 𝑅 Er 𝐴 |
| cec 6625 | class [𝐴]𝑅 |
| cqs 6626 | class (𝐴 / 𝑅) |
| df-er 6627 | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
| df-ec 6629 | ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) |
| df-qs 6633 | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| cmap 6742 | class
↑𝑚 |
| cpm 6743 | class
↑pm |
| df-map 6744 | ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
| df-pm 6745 | ⊢ ↑pm =
(𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
| cixp 6792 | class X𝑥 ∈ 𝐴 𝐵 |
| df-ixp 6793 | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| cen 6832 | class ≈ |
| cdom 6833 | class ≼ |
| cfn 6834 | class Fin |
| df-en 6835 | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| df-dom 6836 | ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| df-fin 6837 | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
| cfi 7077 | class fi |
| df-fi 7078 | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| csup 7091 | class sup(𝐴, 𝐵, 𝑅) |
| cinf 7092 | class inf(𝐴, 𝐵, 𝑅) |
| df-sup 7093 | ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} |
| df-inf 7094 | ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
| cdju 7146 | class (𝐴 ⊔ 𝐵) |
| df-dju 7147 | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| cinl 7154 | class inl |
| cinr 7155 | class inr |
| df-inl 7156 | ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) |
| df-inr 7157 | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
| cdjucase 7192 | class case(𝑅, 𝑆) |
| df-case 7193 | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| cdjud 7211 | class (𝑅 ⊔d 𝑆) |
| df-djud 7212 | ⊢ (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) |
| xnninf 7228 | class ℕ∞ |
| df-nninf 7229 | ⊢ ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
| comni 7243 | class Omni |
| df-omni 7244 | ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} |
| cmarkov 7260 | class Markov |
| df-markov 7261 | ⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬
∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} |
| cwomni 7272 | class WOmni |
| df-womni 7273 | ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o →
DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} |
| ccrd 7291 | class card |
| wacn 7292 | class AC 𝐴 |
| df-card 7293 | ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
| df-acnm 7294 | ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
| wac 7324 | wff
CHOICE |
| df-ac 7325 | ⊢ (CHOICE ↔
∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
| wap 7366 | wff 𝑅 Ap 𝐴 |
| df-pap 7367 | ⊢ (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧))))) |
| wtap 7368 | wff 𝑅 TAp 𝐴 |
| df-tap 7369 | ⊢ (𝑅 TAp 𝐴 ↔ (𝑅 Ap 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
| wacc 7381 | wff
CCHOICE |
| df-cc 7382 | ⊢ (CCHOICE ↔
∀𝑥(dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) |
| cnpi 7392 | class N |
| cpli 7393 | class
+N |
| cmi 7394 | class
·N |
| clti 7395 | class
<N |
| cplpq 7396 | class
+pQ |
| cmpq 7397 | class
·pQ |
| cltpq 7398 | class
<pQ |
| ceq 7399 | class
~Q |
| cnq 7400 | class Q |
| c1q 7401 | class
1Q |
| cplq 7402 | class
+Q |
| cmq 7403 | class
·Q |
| crq 7404 | class
*Q |
| cltq 7405 | class
<Q |
| ceq0 7406 | class
~Q0 |
| cnq0 7407 | class
Q0 |
| c0q0 7408 | class
0Q0 |
| cplq0 7409 | class
+Q0 |
| cmq0 7410 | class
·Q0 |
| cnp 7411 | class P |
| c1p 7412 | class
1P |
| cpp 7413 | class
+P |
| cmp 7414 | class
·P |
| cltp 7415 | class
<P |
| cer 7416 | class
~R |
| cnr 7417 | class R |
| c0r 7418 | class
0R |
| c1r 7419 | class
1R |
| cm1r 7420 | class
-1R |
| cplr 7421 | class
+R |
| cmr 7422 | class
·R |
| cltr 7423 | class
<R |
| df-ni 7424 | ⊢ N = (ω
∖ {∅}) |
| df-pli 7425 | ⊢ +N = (
+o ↾ (N ×
N)) |
| df-mi 7426 | ⊢
·N = ( ·o ↾
(N × N)) |
| df-lti 7427 | ⊢ <N = ( E ∩
(N × N)) |
| df-plpq 7464 | ⊢ +pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈(((1st
‘𝑥)
·N (2nd ‘𝑦)) +N
((1st ‘𝑦)
·N (2nd ‘𝑥))), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
| df-mpq 7465 | ⊢ ·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
| df-ltpq 7466 | ⊢ <pQ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
| df-enq 7467 | ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
| df-nqqs 7468 | ⊢ Q = ((N ×
N) / ~Q ) |
| df-plqqs 7469 | ⊢ +Q =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q ) ∧
𝑧 = [(〈𝑤, 𝑣〉 +pQ
〈𝑢, 𝑓〉)] ~Q
))} |
| df-mqqs 7470 | ⊢ ·Q =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q ) ∧
𝑧 = [(〈𝑤, 𝑣〉 ·pQ
〈𝑢, 𝑓〉)] ~Q
))} |
| df-1nqqs 7471 | ⊢ 1Q =
[〈1o, 1o〉]
~Q |
| df-rq 7472 | ⊢ *Q =
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ (𝑥
·Q 𝑦) =
1Q)} |
| df-ltnqqs 7473 | ⊢ <Q =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~Q ∧
𝑦 = [〈𝑣, 𝑢〉] ~Q ) ∧
(𝑧
·N 𝑢) <N (𝑤
·N 𝑣)))} |
| df-enq0 7544 | ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N)
∧ 𝑦 ∈ (ω
× N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} |
| df-nq0 7545 | ⊢ Q0 = ((ω
× N) / ~Q0
) |
| df-0nq0 7546 | ⊢ 0Q0 =
[〈∅, 1o〉]
~Q0 |
| df-plq0 7547 | ⊢ +Q0 =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))} |
| df-mq0 7548 | ⊢ ·Q0 =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0
))} |
| df-inp 7586 | ⊢ P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |
| df-i1p 7587 | ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q
1Q}, {𝑢 ∣ 1Q
<Q 𝑢}〉 |
| df-iplp 7588 | ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟 +Q
𝑠))}〉) |
| df-imp 7589 | ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠))}〉) |
| df-iltp 7590 | ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧
∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))} |
| df-enr 7846 | ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |
| df-nr 7847 | ⊢ R =
((P × P) / ~R
) |
| df-plr 7848 | ⊢ +R =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |
| df-mr 7849 | ⊢
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |
| df-ltr 7850 | ⊢ <R =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
| df-0r 7851 | ⊢ 0R =
[〈1P, 1P〉]
~R |
| df-1r 7852 | ⊢ 1R =
[〈(1P +P
1P), 1P〉]
~R |
| df-m1r 7853 | ⊢ -1R =
[〈1P, (1P
+P 1P)〉]
~R |
| cc 7930 | class ℂ |
| cr 7931 | class ℝ |
| cc0 7932 | class 0 |
| c1 7933 | class 1 |
| ci 7934 | class i |
| caddc 7935 | class + |
| cltrr 7936 | class
<ℝ |
| cmul 7937 | class · |
| df-c 7938 | ⊢ ℂ = (R
× R) |
| df-0 7939 | ⊢ 0 =
〈0R,
0R〉 |
| df-1 7940 | ⊢ 1 =
〈1R,
0R〉 |
| df-i 7941 | ⊢ i =
〈0R,
1R〉 |
| df-r 7942 | ⊢ ℝ = (R
× {0R}) |
| df-add 7943 | ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
| df-mul 7944 | ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R
(-1R ·R (𝑣
·R 𝑓))), ((𝑣 ·R 𝑢) +R
(𝑤
·R 𝑓))〉))} |
| df-lt 7945 | ⊢ <ℝ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧
∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧
𝑦 = 〈𝑤,
0R〉) ∧ 𝑧 <R 𝑤))} |
| ax-cnex 8023 | ⊢ ℂ ∈ V |
| ax-resscn 8024 | ⊢ ℝ ⊆ ℂ |
| ax-1cn 8025 | ⊢ 1 ∈ ℂ |
| ax-1re 8026 | ⊢ 1 ∈ ℝ |
| ax-icn 8027 | ⊢ i ∈ ℂ |
| ax-addcl 8028 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| ax-addrcl 8029 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| ax-mulcl 8030 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| ax-mulrcl 8031 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
| ax-addcom 8032 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| ax-mulcom 8033 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| ax-addass 8034 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| ax-mulass 8035 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| ax-distr 8036 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| ax-i2m1 8037 | ⊢ ((i · i) + 1) = 0 |
| ax-0lt1 8038 | ⊢ 0 <ℝ 1 |
| ax-1rid 8039 | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| ax-0id 8040 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| ax-rnegex 8041 | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| ax-precex 8042 | ⊢ ((𝐴 ∈ ℝ ∧ 0
<ℝ 𝐴)
→ ∃𝑥 ∈
ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
| ax-cnre 8043 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| ax-pre-ltirr 8044 | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
| ax-pre-ltwlin 8045 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| ax-pre-lttrn 8046 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| ax-pre-apti 8047 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
| ax-pre-ltadd 8048 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
| ax-pre-mulgt0 8049 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0
<ℝ 𝐴
∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| ax-pre-mulext 8050 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| ax-arch 8051 | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| ax-caucvg 8052 | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}
& ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ
𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
| ax-pre-suploc 8053 | ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
| ax-addf 8054 | ⊢ + :(ℂ ×
ℂ)⟶ℂ |
| ax-mulf 8055 | ⊢ · :(ℂ ×
ℂ)⟶ℂ |
| cpnf 8111 | class +∞ |
| cmnf 8112 | class -∞ |
| cxr 8113 | class
ℝ* |
| clt 8114 | class < |
| cle 8115 | class ≤ |
| df-pnf 8116 | ⊢ +∞ = 𝒫 ∪ ℂ |
| df-mnf 8117 | ⊢ -∞ = 𝒫
+∞ |
| df-xr 8118 | ⊢ ℝ* = (ℝ
∪ {+∞, -∞}) |
| df-ltxr 8119 | ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) ×
{+∞}) ∪ ({-∞} × ℝ))) |
| df-le 8120 | ⊢ ≤ = ((ℝ*
× ℝ*) ∖ ◡
< ) |
| cmin 8250 | class − |
| cneg 8251 | class -𝐴 |
| df-sub 8252 | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| df-neg 8253 | ⊢ -𝐴 = (0 − 𝐴) |
| creap 8654 | class
#ℝ |
| df-reap 8655 | ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} |
| cap 8661 | class # |
| df-ap 8662 | ⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} |
| cdiv 8752 | class / |
| df-div 8753 | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥)) |
| cn 9043 | class ℕ |
| df-inn 9044 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| c2 9094 | class 2 |
| c3 9095 | class 3 |
| c4 9096 | class 4 |
| c5 9097 | class 5 |
| c6 9098 | class 6 |
| c7 9099 | class 7 |
| c8 9100 | class 8 |
| c9 9101 | class 9 |
| df-2 9102 | ⊢ 2 = (1 + 1) |
| df-3 9103 | ⊢ 3 = (2 + 1) |
| df-4 9104 | ⊢ 4 = (3 + 1) |
| df-5 9105 | ⊢ 5 = (4 + 1) |
| df-6 9106 | ⊢ 6 = (5 + 1) |
| df-7 9107 | ⊢ 7 = (6 + 1) |
| df-8 9108 | ⊢ 8 = (7 + 1) |
| df-9 9109 | ⊢ 9 = (8 + 1) |
| cn0 9302 | class
ℕ0 |
| df-n0 9303 | ⊢ ℕ0 = (ℕ
∪ {0}) |
| cxnn0 9365 | class
ℕ0* |
| df-xnn0 9366 | ⊢ ℕ0* =
(ℕ0 ∪ {+∞}) |
| cz 9379 | class ℤ |
| df-z 9380 | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
| cdc 9511 | class ;𝐴𝐵 |
| df-dec 9512 | ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
| cuz 9655 | class
ℤ≥ |
| df-uz 9656 | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| cq 9747 | class ℚ |
| df-q 9748 | ⊢ ℚ = ( / “ (ℤ
× ℕ)) |
| crp 9782 | class
ℝ+ |
| df-rp 9783 | ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 <
𝑥} |
| cxne 9898 | class -𝑒𝐴 |
| cxad 9899 | class
+𝑒 |
| cxmu 9900 | class
·e |
| df-xneg 9901 | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| df-xadd 9902 | ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 = +∞,
if(𝑦 = -∞, 0,
+∞), if(𝑥 = -∞,
if(𝑦 = +∞, 0,
-∞), if(𝑦 = +∞,
+∞, if(𝑦 = -∞,
-∞, (𝑥 + 𝑦)))))) |
| df-xmul 9903 | ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if((𝑥 = 0 ∨
𝑦 = 0), 0, if((((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |
| cioo 10017 | class (,) |
| cioc 10018 | class (,] |
| cico 10019 | class [,) |
| cicc 10020 | class [,] |
| df-ioo 10021 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| df-ioc 10022 | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| df-ico 10023 | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| df-icc 10024 | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| cfz 10137 | class ... |
| df-fz 10138 | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
| cfzo 10271 | class ..^ |
| df-fzo 10272 | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
| cfl 10418 | class ⌊ |
| cceil 10419 | class ⌈ |
| df-fl 10420 | ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) |
| df-ceil 10421 | ⊢ ⌈ = (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
| cmo 10474 | class mod |
| df-mod 10475 | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
| cseq 10599 | class seq𝑀( + , 𝐹) |
| df-seqfrec 10600 | ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| cexp 10690 | class ↑ |
| df-exp 10691 | ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦))))) |
| cfa 10877 | class ! |
| df-fac 10878 | ⊢ ! = ({〈0, 1〉} ∪ seq1( ·
, I )) |
| cbc 10899 | class C |
| df-bc 10900 | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| chash 10927 | class ♯ |
| df-ihash 10928 | ⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})) |
| cword 11001 | class Word 𝑆 |
| df-word 11002 | ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| clsw 11045 | class lastS |
| df-lsw 11046 | ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
| cconcat 11054 | class ++ |
| df-concat 11055 | ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| cs1 11077 | class 〈“𝐴”〉 |
| df-s1 11078 | ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} |
| csubstr 11106 | class substr |
| df-substr 11107 | ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
| cpfx 11133 | class prefix |
| df-pfx 11134 | ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) |
| cshi 11169 | class shift |
| df-shft 11170 | ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
| ccj 11194 | class ∗ |
| cre 11195 | class ℜ |
| cim 11196 | class ℑ |
| df-cj 11197 | ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
| df-re 11198 | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| df-im 11199 | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
| csqrt 11351 | class √ |
| cabs 11352 | class abs |
| df-rsqrt 11353 | ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) |
| df-abs 11354 | ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) |
| cli 11633 | class ⇝ |
| df-clim 11634 | ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
| csu 11708 | class Σ𝑘 ∈ 𝐴 𝐵 |
| df-sumdc 11709 | ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| cprod 11905 | class ∏𝑘 ∈ 𝐴 𝐵 |
| df-proddc 11906 | ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| ce 11997 | class exp |
| ceu 11998 | class e |
| csin 11999 | class sin |
| ccos 12000 | class cos |
| ctan 12001 | class tan |
| cpi 12002 | class π |
| df-ef 12003 | ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
| df-e 12004 | ⊢ e =
(exp‘1) |
| df-sin 12005 | ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
| df-cos 12006 | ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
| df-tan 12007 | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
| df-pi 12008 | ⊢ π = inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) |
| ctau 12130 | class τ |
| df-tau 12131 | ⊢ τ = inf((ℝ+ ∩
(◡cos “ {1})), ℝ, <
) |
| cdvds 12142 | class ∥ |
| df-dvds 12143 | ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} |
| cbits 12295 | class bits |
| df-bits 12296 | ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2
∥ (⌊‘(𝑛 /
(2↑𝑚)))}) |
| cgcd 12318 | class gcd |
| df-gcd 12319 | ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
| clcm 12426 | class lcm |
| df-lcm 12427 | ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| cprime 12473 | class ℙ |
| df-prm 12474 | ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} |
| cnumer 12547 | class numer |
| cdenom 12548 | class denom |
| df-numer 12549 | ⊢ numer = (𝑦 ∈ ℚ ↦ (1st
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| df-denom 12550 | ⊢ denom = (𝑦 ∈ ℚ ↦ (2nd
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| codz 12574 | class
odℤ |
| cphi 12575 | class ϕ |
| df-odz 12576 | ⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |
| df-phi 12577 | ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) |
| cpc 12651 | class pCnt |
| df-pc 12652 | ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
| cgz 12736 | class ℤ[i] |
| df-gz 12737 | ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧
(ℑ‘𝑥) ∈
ℤ)} |
| cstr 12872 | class Struct |
| cnx 12873 | class ndx |
| csts 12874 | class sSet |
| cslot 12875 | class Slot 𝐴 |
| cbs 12876 | class Base |
| cress 12877 | class
↾s |
| df-struct 12878 | ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ ×
ℕ)) ∧ Fun (𝑓
∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} |
| df-ndx 12879 | ⊢ ndx = ( I ↾ ℕ) |
| df-slot 12880 | ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) |
| df-base 12882 | ⊢ Base = Slot 1 |
| df-sets 12883 | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| df-iress 12884 | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| cplusg 12953 | class +g |
| cmulr 12954 | class .r |
| cstv 12955 | class
*𝑟 |
| csca 12956 | class Scalar |
| cvsca 12957 | class
·𝑠 |
| cip 12958 | class
·𝑖 |
| cts 12959 | class TopSet |
| cple 12960 | class le |
| coc 12961 | class oc |
| cds 12962 | class dist |
| cunif 12963 | class UnifSet |
| chom 12964 | class Hom |
| cco 12965 | class comp |
| df-plusg 12966 | ⊢ +g = Slot 2 |
| df-mulr 12967 | ⊢ .r = Slot 3 |
| df-starv 12968 | ⊢ *𝑟 = Slot
4 |
| df-sca 12969 | ⊢ Scalar = Slot 5 |
| df-vsca 12970 | ⊢ ·𝑠 = Slot
6 |
| df-ip 12971 | ⊢
·𝑖 = Slot 8 |
| df-tset 12972 | ⊢ TopSet = Slot 9 |
| df-ple 12973 | ⊢ le = Slot ;10 |
| df-ocomp 12974 | ⊢ oc = Slot ;11 |
| df-ds 12975 | ⊢ dist = Slot ;12 |
| df-unif 12976 | ⊢ UnifSet = Slot ;13 |
| df-hom 12977 | ⊢ Hom = Slot ;14 |
| df-cco 12978 | ⊢ comp = Slot ;15 |
| crest 13115 | class
↾t |
| ctopn 13116 | class TopOpen |
| df-rest 13117 | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
| df-topn 13118 | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t
(Base‘𝑤))) |
| ctg 13130 | class topGen |
| cpt 13131 | class
∏t |
| c0g 13132 | class 0g |
| cgsu 13133 | class
Σg |
| df-0g 13134 | ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
| df-igsum 13135 | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) |
| df-topgen 13136 | ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
| df-pt 13137 | ⊢ ∏t = (𝑓 ∈ V ↦
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
| cprds 13141 | class Xs |
| cpws 13142 | class
↑s |
| df-prds 13143 | ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
| df-pws 13166 | ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) |
| cimas 13175 | class
“s |
| cqus 13176 | class
/s |
| cxps 13177 | class
×s |
| df-iimas 13178 | ⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
| df-qus 13179 | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
| df-xps 13180 | ⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) |
| cplusf 13229 | class
+𝑓 |
| cmgm 13230 | class Mgm |
| df-plusf 13231 | ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
| df-mgm 13232 | ⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} |
| csgrp 13277 | class Smgrp |
| df-sgrp 13278 | ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
| cmnd 13292 | class Mnd |
| df-mnd 13293 | ⊢ Mnd = {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
| cmhm 13333 | class MndHom |
| csubmnd 13334 | class SubMnd |
| df-mhm 13335 | ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
| df-submnd 13336 | ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣
((0g‘𝑠)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) |
| cgrp 13376 | class Grp |
| cminusg 13377 | class invg |
| csg 13378 | class -g |
| df-grp 13379 | ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} |
| df-minusg 13380 | ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
| df-sbg 13381 | ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) |
| cmg 13499 | class .g |
| df-mulg 13500 | ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔),
⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) |
| csubg 13547 | class SubGrp |
| cnsg 13548 | class NrmSGrp |
| cqg 13549 | class
~QG |
| df-subg 13550 | ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) |
| df-nsg 13551 | ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
| df-eqg 13552 | ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) |
| cghm 13620 | class GrpHom |
| df-ghm 13621 | ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |
| ccmn 13664 | class CMnd |
| cabl 13665 | class Abel |
| df-cmn 13666 | ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
| df-abl 13667 | ⊢ Abel = (Grp ∩ CMnd) |
| cmgp 13726 | class mulGrp |
| df-mgp 13727 | ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx),
(.r‘𝑤)〉)) |
| crng 13738 | class Rng |
| df-rng 13739 | ⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧
[(Base‘𝑓) /
𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
| cur 13765 | class 1r |
| df-ur 13766 | ⊢ 1r = (0g
∘ mulGrp) |
| csrg 13769 | class SRing |
| df-srg 13770 | ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
| crg 13802 | class Ring |
| ccrg 13803 | class CRing |
| df-ring 13804 | ⊢ Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
| df-cring 13805 | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
| coppr 13873 | class
oppr |
| df-oppr 13874 | ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
(.r‘𝑓)〉)) |
| cdsr 13892 | class
∥r |
| cui 13893 | class Unit |
| cir 13894 | class Irred |
| df-dvdsr 13895 | ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
| df-unit 13896 | ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
| df-irred 13897 | ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
| cinvr 13926 | class invr |
| df-invr 13927 | ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
| cdvr 13937 | class /r |
| df-dvr 13938 | ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) |
| crh 13956 | class RingHom |
| crs 13957 | class RingIso |
| df-rhm 13958 | ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
| df-rim 13959 | ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
| cnzr 13985 | class NzRing |
| df-nzr 13986 | ⊢ NzRing = {𝑟 ∈ Ring ∣
(1r‘𝑟)
≠ (0g‘𝑟)} |
| clring 13996 | class LRing |
| df-lring 13997 | ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
| csubrng 14003 | class SubRng |
| df-subrng 14004 | ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) |
| csubrg 14023 | class SubRing |
| crgspn 14024 | class RingSpan |
| df-subrg 14025 | ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧
(1r‘𝑤)
∈ 𝑠)}) |
| df-rgspn 14026 | ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (SubRing‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
| crlreg 14061 | class RLReg |
| cdomn 14062 | class Domn |
| cidom 14063 | class IDomn |
| df-rlreg 14064 | ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |
| df-domn 14065 | ⊢ Domn = {𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
| df-idom 14066 | ⊢ IDomn = (CRing ∩ Domn) |
| capr 14086 | class #r |
| df-apr 14087 | ⊢ #r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g‘𝑤)𝑦) ∈ (Unit‘𝑤))}) |
| clmod 14093 | class LMod |
| cscaf 14094 | class
·sf |
| df-lmod 14095 | ⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| df-scaf 14096 | ⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| clss 14158 | class LSubSp |
| df-lssm 14159 | ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| clspn 14192 | class LSpan |
| df-lsp 14193 | ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
| csra 14239 | class subringAlg |
| crglmod 14240 | class ringLMod |
| df-sra 14241 | ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
| df-rgmod 14242 | ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| clidl 14273 | class LIdeal |
| crsp 14274 | class RSpan |
| df-lidl 14275 | ⊢ LIdeal = (LSubSp ∘
ringLMod) |
| df-rsp 14276 | ⊢ RSpan = (LSpan ∘
ringLMod) |
| c2idl 14305 | class 2Ideal |
| df-2idl 14306 | ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩
(LIdeal‘(oppr‘𝑟)))) |
| cpsmet 14341 | class PsMet |
| cxmet 14342 | class ∞Met |
| cmet 14343 | class Met |
| cbl 14344 | class ball |
| cfbas 14345 | class fBas |
| cfg 14346 | class filGen |
| cmopn 14347 | class MetOpen |
| cmetu 14348 | class metUnif |
| df-psmet 14349 | ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
| df-xmet 14350 | ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
| df-met 14351 | ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚
(𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |
| df-bl 14352 | ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) |
| df-mopn 14353 | ⊢ MetOpen = (𝑑 ∈ ∪ ran
∞Met ↦ (topGen‘ran (ball‘𝑑))) |
| df-fbas 14354 | ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) |
| df-fg 14355 | ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |
| df-metu 14356 | ⊢ metUnif = (𝑑 ∈ ∪ ran
PsMet ↦ ((dom dom 𝑑
× dom dom 𝑑)filGenran
(𝑎 ∈
ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) |
| ccnfld 14362 | class
ℂfld |
| df-cnfld 14363 | ⊢ ℂfld =
(({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| czring 14396 | class
ℤring |
| df-zring 14397 | ⊢ ℤring =
(ℂfld ↾s ℤ) |
| czrh 14417 | class ℤRHom |
| czlm 14418 | class ℤMod |
| czn 14419 | class
ℤ/nℤ |
| df-zrh 14420 | ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
| df-zlm 14421 | ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) sSet 〈( ·𝑠
‘ndx), (.g‘𝑔)〉)) |
| df-zn 14422 | ⊢ ℤ/nℤ = (𝑛 ∈ ℕ0
↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
| cmps 14467 | class mPwSer |
| cmpl 14468 | class mPoly |
| df-psr 14469 | ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
| df-mplcoe 14470 | ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) |
| ctop 14513 | class Top |
| df-top 14514 | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| ctopon 14526 | class TopOn |
| df-topon 14527 | ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
| ctps 14546 | class TopSp |
| df-topsp 14547 | ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} |
| ctb 14558 | class TopBases |
| df-bases 14559 | ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
| ccld 14608 | class Clsd |
| cnt 14609 | class int |
| ccl 14610 | class cls |
| df-cld 14611 | ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
| df-ntr 14612 | ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
| df-cls 14613 | ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) |
| cnei 14654 | class nei |
| df-nei 14655 | ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
| ccn 14701 | class Cn |
| ccnp 14702 | class CnP |
| clm 14703 | class
⇝𝑡 |
| df-cn 14704 | ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
| df-cnp 14705 | ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| df-lm 14706 | ⊢ ⇝𝑡 =
(𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| ctx 14768 | class
×t |
| df-tx 14769 | ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
| chmeo 14816 | class Homeo |
| df-hmeo 14817 | ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) |
| cxms 14852 | class ∞MetSp |
| cms 14853 | class MetSp |
| ctms 14854 | class toMetSp |
| df-xms 14855 | ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
| df-ms 14856 | ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
| df-tms 14857 | ⊢ toMetSp = (𝑑 ∈ ∪ ran
∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) |
| ccncf 15086 | class –cn→ |
| df-cncf 15087 | ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
| climc 15170 | class
limℂ |
| cdv 15171 | class D |
| df-limced 15172 | ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm
ℂ), 𝑥 ∈ ℂ
↦ {𝑦 ∈ ℂ
∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
| df-dvap 15173 | ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm
𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| cply 15244 | class Poly |
| cidp 15245 | class
Xp |
| df-ply 15246 | ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| df-idp 15247 | ⊢ Xp = ( I ↾
ℂ) |
| clog 15372 | class log |
| ccxp 15373 | class
↑𝑐 |
| df-relog 15374 | ⊢ log = ◡(exp ↾ ℝ) |
| df-rpcxp 15375 | ⊢ ↑𝑐 = (𝑥 ∈ ℝ+,
𝑦 ∈ ℂ ↦
(exp‘(𝑦 ·
(log‘𝑥)))) |
| clogb 15459 | class
logb |
| df-logb 15460 | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0})
↦ ((log‘𝑦) /
(log‘𝑥))) |
| csgm 15497 | class σ |
| df-sgm 15498 | ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
| clgs 15518 | class
/L |
| df-lgs 15519 | ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |
| cedgf 15647 | class .ef |
| df-edgf 15648 | ⊢ .ef = Slot ;18 |
| cvtx 15655 | class Vtx |
| ciedg 15656 | class iEdg |
| df-vtx 15657 | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st
‘𝑔),
(Base‘𝑔))) |
| df-iedg 15658 | ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd
‘𝑔), (.ef‘𝑔))) |
| cedg 15698 | class Edg |
| df-edg 15699 | ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) |
| cuhgr 15707 | class UHGraph |
| cushgr 15708 | class USHGraph |
| df-uhgrm 15709 | ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| df-ushgrm 15710 | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑠 ∈ 𝒫 𝑣 ∣ ∃𝑗 𝑗 ∈ 𝑠}} |
| The
list of syntax, axioms (ax-) and definitions (df-) for the starts here |
| wdcin 15803 | wff 𝐴 DECIDin
𝐵 |
| df-dcin 15804 | ⊢ (𝐴 DECIDin
𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
| wbd 15822 | wff BOUNDED 𝜑 |
| ax-bd0 15823 | ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (BOUNDED 𝜑 → BOUNDED
𝜓) |
| ax-bdim 15824 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 → 𝜓) |
| ax-bdan 15825 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 ∧ 𝜓) |
| ax-bdor 15826 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 ∨ 𝜓) |
| ax-bdn 15827 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED ¬
𝜑 |
| ax-bdal 15828 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED
∀𝑥 ∈ 𝑦 𝜑 |
| ax-bdex 15829 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED
∃𝑥 ∈ 𝑦 𝜑 |
| ax-bdeq 15830 | ⊢ BOUNDED 𝑥 = 𝑦 |
| ax-bdel 15831 | ⊢ BOUNDED 𝑥 ∈ 𝑦 |
| ax-bdsb 15832 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED [𝑦 / 𝑥]𝜑 |
| wbdc 15850 | wff BOUNDED
𝐴 |
| df-bdc 15851 | ⊢ (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥 ∈ 𝐴) |
| ax-bdsep 15894 | ⊢ BOUNDED 𝜑 ⇒ ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| ax-bj-d0cl 15934 | ⊢ BOUNDED 𝜑 ⇒ ⊢ DECID 𝜑 |
| wind 15936 | wff Ind 𝐴 |
| df-bj-ind 15937 | ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
| ax-infvn 15951 | ⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) |
| ax-bdsetind 15978 | ⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) |
| ax-inf2 15986 | ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) |
| ax-strcoll 15992 | ⊢ ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| ax-sscoll 15997 | ⊢ ∀𝑎∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
| ax-ddkcomp 15999 | ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐵) → 𝑥 ≤ 𝐵))) |
| walsi 16089 | wff ∀!𝑥(𝜑 → 𝜓) |
| walsc 16090 | wff ∀!𝑥 ∈ 𝐴𝜑 |
| df-alsi 16091 | ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) |
| df-alsc 16092 | ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |