List of Syntax, Axioms (ax-) and
Definitions (df-)
Ref | Expression (see link for any distinct variable requirements)
|
wn 3 | wff ¬ 𝜑 |
wi 4 | wff (𝜑 → 𝜓) |
ax-mp 5 | ⊢ 𝜑
& ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 |
ax-1 6 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
ax-2 7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
wa 104 | wff (𝜑 ∧ 𝜓) |
wb 105 | wff (𝜑 ↔ 𝜓) |
ax-ia1 106 | ⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
ax-ia2 107 | ⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
ax-ia3 108 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
df-bi 117 | ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) |
ax-in1 614 | ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) |
ax-in2 615 | ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) |
wo 708 | wff (𝜑 ∨ 𝜓) |
ax-io 709 | ⊢ (((𝜑 ∨ 𝜒) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓))) |
wstab 830 | wff STAB 𝜑 |
df-stab 831 | ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) |
wdc 834 | wff DECID 𝜑 |
df-dc 835 | ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
w3o 977 | wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
w3a 978 | wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
df-3or 979 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
df-3an 980 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
wal 1351 | wff ∀𝑥𝜑 |
cv 1352 | class 𝑥 |
wceq 1353 | wff 𝐴 = 𝐵 |
wtru 1354 | wff ⊤ |
df-tru 1356 | ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
wfal 1358 | wff ⊥ |
df-fal 1359 | ⊢ (⊥ ↔ ¬
⊤) |
wxo 1375 | wff (𝜑 ⊻ 𝜓) |
df-xor 1376 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
ax-5 1447 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
ax-7 1448 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
ax-gen 1449 | ⊢ 𝜑 ⇒ ⊢ ∀𝑥𝜑 |
wnf 1460 | wff Ⅎ𝑥𝜑 |
df-nf 1461 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
wex 1492 | wff ∃𝑥𝜑 |
ax-ie1 1493 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
ax-ie2 1494 | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
ax-8 1504 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
ax-10 1505 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
ax-11 1506 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
ax-i12 1507 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
ax-bndl 1509 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
ax-4 1510 | ⊢ (∀𝑥𝜑 → 𝜑) |
ax-17 1526 | ⊢ (𝜑 → ∀𝑥𝜑) |
ax-i9 1530 | ⊢ ∃𝑥 𝑥 = 𝑦 |
ax-ial 1534 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
ax-i5r 1535 | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
ax-10o 1716 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
wsb 1762 | wff [𝑦 / 𝑥]𝜑 |
df-sb 1763 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
ax-16 1814 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
ax-11o 1823 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
weu 2026 | wff ∃!𝑥𝜑 |
wmo 2027 | wff ∃*𝑥𝜑 |
df-eu 2029 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
df-mo 2030 | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
wcel 2148 | wff 𝐴 ∈ 𝐵 |
ax-13 2150 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
ax-14 2151 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
ax-ext 2159 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
cab 2163 | class {𝑥 ∣ 𝜑} |
df-clab 2164 | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
df-cleq 2170 | ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
df-clel 2173 | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
wnfc 2306 | wff Ⅎ𝑥𝐴 |
df-nfc 2308 | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
wne 2347 | wff 𝐴 ≠ 𝐵 |
df-ne 2348 | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
wnel 2442 | wff 𝐴 ∉ 𝐵 |
df-nel 2443 | ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) |
wral 2455 | wff ∀𝑥 ∈ 𝐴 𝜑 |
wrex 2456 | wff ∃𝑥 ∈ 𝐴 𝜑 |
wreu 2457 | wff ∃!𝑥 ∈ 𝐴 𝜑 |
wrmo 2458 | wff ∃*𝑥 ∈ 𝐴 𝜑 |
crab 2459 | class {𝑥 ∈ 𝐴 ∣ 𝜑} |
df-ral 2460 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
df-rex 2461 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
df-reu 2462 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
df-rmo 2463 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
df-rab 2464 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
cvv 2737 | class V |
df-v 2739 | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
wcdeq 2945 | wff CondEq(𝑥 = 𝑦 → 𝜑) |
df-cdeq 2946 | ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
wsbc 2962 | wff [𝐴 / 𝑥]𝜑 |
df-sbc 2963 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
csb 3057 | class ⦋𝐴 / 𝑥⦌𝐵 |
df-csb 3058 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
cdif 3126 | class (𝐴 ∖ 𝐵) |
cun 3127 | class (𝐴 ∪ 𝐵) |
cin 3128 | class (𝐴 ∩ 𝐵) |
wss 3129 | wff 𝐴 ⊆ 𝐵 |
df-dif 3131 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} |
df-un 3133 | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
df-in 3135 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
df-ss 3142 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
c0 3422 | class ∅ |
df-nul 3423 | ⊢ ∅ = (V ∖ V) |
cif 3534 | class if(𝜑, 𝐴, 𝐵) |
df-if 3535 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
cpw 3574 | class 𝒫 𝐴 |
df-pw 3576 | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
csn 3591 | class {𝐴} |
cpr 3592 | class {𝐴, 𝐵} |
ctp 3593 | class {𝐴, 𝐵, 𝐶} |
cop 3594 | class 〈𝐴, 𝐵〉 |
cotp 3595 | class 〈𝐴, 𝐵, 𝐶〉 |
df-sn 3597 | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
df-pr 3598 | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
df-tp 3599 | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
df-op 3600 | ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} |
df-ot 3601 | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
cuni 3807 | class ∪
𝐴 |
df-uni 3808 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
cint 3842 | class ∩
𝐴 |
df-int 3843 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
ciun 3884 | class ∪ 𝑥 ∈ 𝐴 𝐵 |
ciin 3885 | class ∩ 𝑥 ∈ 𝐴 𝐵 |
df-iun 3886 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
df-iin 3887 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
wdisj 3977 | wff Disj 𝑥 ∈ 𝐴 𝐵 |
df-disj 3978 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
wbr 4000 | wff 𝐴𝑅𝐵 |
df-br 4001 | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
copab 4060 | class {〈𝑥, 𝑦〉 ∣ 𝜑} |
cmpt 4061 | class (𝑥 ∈ 𝐴 ↦ 𝐵) |
df-opab 4062 | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
df-mpt 4063 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
wtr 4098 | wff Tr 𝐴 |
df-tr 4099 | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
ax-coll 4115 | ⊢ Ⅎ𝑏𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
ax-sep 4118 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
ax-nul 4126 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
ax-pow 4171 | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
wem 4191 | wff
EXMID |
df-exmid 4192 | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥)) |
ax-pr 4206 | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
cep 4284 | class E |
cid 4285 | class I |
df-eprel 4286 | ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} |
df-id 4290 | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
wpo 4291 | wff 𝑅 Po 𝐴 |
wor 4292 | wff 𝑅 Or 𝐴 |
df-po 4293 | ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
df-iso 4294 | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
wfrfor 4324 | wff FrFor 𝑅𝐴𝑆 |
wfr 4325 | wff 𝑅 Fr 𝐴 |
wse 4326 | wff 𝑅 Se 𝐴 |
wwe 4327 | wff 𝑅 We 𝐴 |
df-frfor 4328 | ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) |
df-frind 4329 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) |
df-se 4330 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
df-wetr 4331 | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
word 4359 | wff Ord 𝐴 |
con0 4360 | class On |
wlim 4361 | wff Lim 𝐴 |
csuc 4362 | class suc 𝐴 |
df-iord 4363 | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) |
df-on 4365 | ⊢ On = {𝑥 ∣ Ord 𝑥} |
df-ilim 4366 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
df-suc 4368 | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
ax-un 4430 | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
ax-setind 4533 | ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) |
ax-iinf 4584 | ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
com 4586 | class ω |
df-iom 4587 | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
cxp 4621 | class (𝐴 × 𝐵) |
ccnv 4622 | class ◡𝐴 |
cdm 4623 | class dom 𝐴 |
crn 4624 | class ran 𝐴 |
cres 4625 | class (𝐴 ↾ 𝐵) |
cima 4626 | class (𝐴 “ 𝐵) |
ccom 4627 | class (𝐴 ∘ 𝐵) |
wrel 4628 | wff Rel 𝐴 |
df-xp 4629 | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
df-rel 4630 | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
df-cnv 4631 | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
df-co 4632 | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
df-dm 4633 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
df-rn 4634 | ⊢ ran 𝐴 = dom ◡𝐴 |
df-res 4635 | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
df-ima 4636 | ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) |
cio 5172 | class (℩𝑥𝜑) |
df-iota 5174 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
wfun 5206 | wff Fun 𝐴 |
wfn 5207 | wff 𝐴 Fn 𝐵 |
wf 5208 | wff 𝐹:𝐴⟶𝐵 |
wf1 5209 | wff 𝐹:𝐴–1-1→𝐵 |
wfo 5210 | wff 𝐹:𝐴–onto→𝐵 |
wf1o 5211 | wff 𝐹:𝐴–1-1-onto→𝐵 |
cfv 5212 | class (𝐹‘𝐴) |
wiso 5213 | wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
df-fun 5214 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
df-fn 5215 | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
df-f 5216 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
df-f1 5217 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
df-fo 5218 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
df-f1o 5219 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
df-fv 5220 | ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) |
df-isom 5221 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
crio 5824 | class (℩𝑥 ∈ 𝐴 𝜑) |
df-riota 5825 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
co 5869 | class (𝐴𝐹𝐵) |
coprab 5870 | class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
cmpo 5871 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
df-ov 5872 | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
df-oprab 5873 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
df-mpo 5874 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
cof 6075 | class ∘𝑓
𝑅 |
cofr 6076 | class ∘𝑟
𝑅 |
df-of 6077 | ⊢ ∘𝑓
𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
df-ofr 6078 | ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
c1st 6133 | class 1st |
c2nd 6134 | class 2nd |
df-1st 6135 | ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
df-2nd 6136 | ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
ctpos 6239 | class tpos 𝐹 |
df-tpos 6240 | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
wsmo 6280 | wff Smo 𝐴 |
df-smo 6281 | ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
crecs 6299 | class recs(𝐹) |
df-recs 6300 | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
crdg 6364 | class rec(𝐹, 𝐼) |
df-irdg 6365 | ⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
cfrec 6385 | class frec(𝐹, 𝐼) |
df-frec 6386 | ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
c1o 6404 | class 1o |
c2o 6405 | class 2o |
c3o 6406 | class 3o |
c4o 6407 | class 4o |
coa 6408 | class +o |
comu 6409 | class
·o |
coei 6410 | class
↑o |
df-1o 6411 | ⊢ 1o = suc
∅ |
df-2o 6412 | ⊢ 2o = suc
1o |
df-3o 6413 | ⊢ 3o = suc
2o |
df-4o 6414 | ⊢ 4o = suc
3o |
df-oadd 6415 | ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) |
df-omul 6416 | ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
df-oexpi 6417 | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
wer 6526 | wff 𝑅 Er 𝐴 |
cec 6527 | class [𝐴]𝑅 |
cqs 6528 | class (𝐴 / 𝑅) |
df-er 6529 | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
df-ec 6531 | ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) |
df-qs 6535 | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
cmap 6642 | class
↑𝑚 |
cpm 6643 | class
↑pm |
df-map 6644 | ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
df-pm 6645 | ⊢ ↑pm =
(𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
cixp 6692 | class X𝑥 ∈ 𝐴 𝐵 |
df-ixp 6693 | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
cen 6732 | class ≈ |
cdom 6733 | class ≼ |
cfn 6734 | class Fin |
df-en 6735 | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
df-dom 6736 | ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
df-fin 6737 | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
cfi 6961 | class fi |
df-fi 6962 | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
csup 6975 | class sup(𝐴, 𝐵, 𝑅) |
cinf 6976 | class inf(𝐴, 𝐵, 𝑅) |
df-sup 6977 | ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} |
df-inf 6978 | ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
cdju 7030 | class (𝐴 ⊔ 𝐵) |
df-dju 7031 | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
cinl 7038 | class inl |
cinr 7039 | class inr |
df-inl 7040 | ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) |
df-inr 7041 | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
cdjucase 7076 | class case(𝑅, 𝑆) |
df-case 7077 | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
cdjud 7095 | class (𝑅 ⊔d 𝑆) |
df-djud 7096 | ⊢ (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) |
xnninf 7112 | class ℕ∞ |
df-nninf 7113 | ⊢ ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
comni 7126 | class Omni |
df-omni 7127 | ⊢ Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} |
cmarkov 7143 | class Markov |
df-markov 7144 | ⊢ Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬
∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅))} |
cwomni 7155 | class WOmni |
df-womni 7156 | ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o →
DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} |
ccrd 7172 | class card |
df-card 7173 | ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
wac 7198 | wff
CHOICE |
df-ac 7199 | ⊢ (CHOICE ↔
∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
wtap 7240 | wff 𝑅 TAp 𝐴 |
df-tap 7241 | ⊢ (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) |
wacc 7252 | wff
CCHOICE |
df-cc 7253 | ⊢ (CCHOICE ↔
∀𝑥(dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) |
cnpi 7262 | class N |
cpli 7263 | class
+N |
cmi 7264 | class
·N |
clti 7265 | class
<N |
cplpq 7266 | class
+pQ |
cmpq 7267 | class
·pQ |
cltpq 7268 | class
<pQ |
ceq 7269 | class
~Q |
cnq 7270 | class Q |
c1q 7271 | class
1Q |
cplq 7272 | class
+Q |
cmq 7273 | class
·Q |
crq 7274 | class
*Q |
cltq 7275 | class
<Q |
ceq0 7276 | class
~Q0 |
cnq0 7277 | class
Q0 |
c0q0 7278 | class
0Q0 |
cplq0 7279 | class
+Q0 |
cmq0 7280 | class
·Q0 |
cnp 7281 | class P |
c1p 7282 | class
1P |
cpp 7283 | class
+P |
cmp 7284 | class
·P |
cltp 7285 | class
<P |
cer 7286 | class
~R |
cnr 7287 | class R |
c0r 7288 | class
0R |
c1r 7289 | class
1R |
cm1r 7290 | class
-1R |
cplr 7291 | class
+R |
cmr 7292 | class
·R |
cltr 7293 | class
<R |
df-ni 7294 | ⊢ N = (ω
∖ {∅}) |
df-pli 7295 | ⊢ +N = (
+o ↾ (N ×
N)) |
df-mi 7296 | ⊢
·N = ( ·o ↾
(N × N)) |
df-lti 7297 | ⊢ <N = ( E ∩
(N × N)) |
df-plpq 7334 | ⊢ +pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈(((1st
‘𝑥)
·N (2nd ‘𝑦)) +N
((1st ‘𝑦)
·N (2nd ‘𝑥))), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
df-mpq 7335 | ⊢ ·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
df-ltpq 7336 | ⊢ <pQ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
df-enq 7337 | ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
df-nqqs 7338 | ⊢ Q = ((N ×
N) / ~Q ) |
df-plqqs 7339 | ⊢ +Q =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q ) ∧
𝑧 = [(〈𝑤, 𝑣〉 +pQ
〈𝑢, 𝑓〉)] ~Q
))} |
df-mqqs 7340 | ⊢ ·Q =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q ) ∧
𝑧 = [(〈𝑤, 𝑣〉 ·pQ
〈𝑢, 𝑓〉)] ~Q
))} |
df-1nqqs 7341 | ⊢ 1Q =
[〈1o, 1o〉]
~Q |
df-rq 7342 | ⊢ *Q =
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ (𝑥
·Q 𝑦) =
1Q)} |
df-ltnqqs 7343 | ⊢ <Q =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~Q ∧
𝑦 = [〈𝑣, 𝑢〉] ~Q ) ∧
(𝑧
·N 𝑢) <N (𝑤
·N 𝑣)))} |
df-enq0 7414 | ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N)
∧ 𝑦 ∈ (ω
× N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} |
df-nq0 7415 | ⊢ Q0 = ((ω
× N) / ~Q0
) |
df-0nq0 7416 | ⊢ 0Q0 =
[〈∅, 1o〉]
~Q0 |
df-plq0 7417 | ⊢ +Q0 =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))} |
df-mq0 7418 | ⊢ ·Q0 =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0
))} |
df-inp 7456 | ⊢ P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |
df-i1p 7457 | ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q
1Q}, {𝑢 ∣ 1Q
<Q 𝑢}〉 |
df-iplp 7458 | ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟 +Q
𝑠))}〉) |
df-imp 7459 | ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠))}〉) |
df-iltp 7460 | ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧
∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))} |
df-enr 7716 | ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |
df-nr 7717 | ⊢ R =
((P × P) / ~R
) |
df-plr 7718 | ⊢ +R =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |
df-mr 7719 | ⊢
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |
df-ltr 7720 | ⊢ <R =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
df-0r 7721 | ⊢ 0R =
[〈1P, 1P〉]
~R |
df-1r 7722 | ⊢ 1R =
[〈(1P +P
1P), 1P〉]
~R |
df-m1r 7723 | ⊢ -1R =
[〈1P, (1P
+P 1P)〉]
~R |
cc 7800 | class ℂ |
cr 7801 | class ℝ |
cc0 7802 | class 0 |
c1 7803 | class 1 |
ci 7804 | class i |
caddc 7805 | class + |
cltrr 7806 | class
<ℝ |
cmul 7807 | class · |
df-c 7808 | ⊢ ℂ = (R
× R) |
df-0 7809 | ⊢ 0 =
〈0R,
0R〉 |
df-1 7810 | ⊢ 1 =
〈1R,
0R〉 |
df-i 7811 | ⊢ i =
〈0R,
1R〉 |
df-r 7812 | ⊢ ℝ = (R
× {0R}) |
df-add 7813 | ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
df-mul 7814 | ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R
(-1R ·R (𝑣
·R 𝑓))), ((𝑣 ·R 𝑢) +R
(𝑤
·R 𝑓))〉))} |
df-lt 7815 | ⊢ <ℝ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧
∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧
𝑦 = 〈𝑤,
0R〉) ∧ 𝑧 <R 𝑤))} |
ax-cnex 7893 | ⊢ ℂ ∈ V |
ax-resscn 7894 | ⊢ ℝ ⊆ ℂ |
ax-1cn 7895 | ⊢ 1 ∈ ℂ |
ax-1re 7896 | ⊢ 1 ∈ ℝ |
ax-icn 7897 | ⊢ i ∈ ℂ |
ax-addcl 7898 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
ax-addrcl 7899 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
ax-mulcl 7900 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
ax-mulrcl 7901 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
ax-addcom 7902 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
ax-mulcom 7903 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
ax-addass 7904 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
ax-mulass 7905 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
ax-distr 7906 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
ax-i2m1 7907 | ⊢ ((i · i) + 1) = 0 |
ax-0lt1 7908 | ⊢ 0 <ℝ 1 |
ax-1rid 7909 | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
ax-0id 7910 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
ax-rnegex 7911 | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
ax-precex 7912 | ⊢ ((𝐴 ∈ ℝ ∧ 0
<ℝ 𝐴)
→ ∃𝑥 ∈
ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
ax-cnre 7913 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
ax-pre-ltirr 7914 | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
ax-pre-ltwlin 7915 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
ax-pre-lttrn 7916 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
ax-pre-apti 7917 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
ax-pre-ltadd 7918 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
ax-pre-mulgt0 7919 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0
<ℝ 𝐴
∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
ax-pre-mulext 7920 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
ax-arch 7921 | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
ax-caucvg 7922 | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}
& ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ
𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
ax-pre-suploc 7923 | ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
ax-addf 7924 | ⊢ + :(ℂ ×
ℂ)⟶ℂ |
ax-mulf 7925 | ⊢ · :(ℂ ×
ℂ)⟶ℂ |
cpnf 7979 | class +∞ |
cmnf 7980 | class -∞ |
cxr 7981 | class
ℝ* |
clt 7982 | class < |
cle 7983 | class ≤ |
df-pnf 7984 | ⊢ +∞ = 𝒫 ∪ ℂ |
df-mnf 7985 | ⊢ -∞ = 𝒫
+∞ |
df-xr 7986 | ⊢ ℝ* = (ℝ
∪ {+∞, -∞}) |
df-ltxr 7987 | ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) ×
{+∞}) ∪ ({-∞} × ℝ))) |
df-le 7988 | ⊢ ≤ = ((ℝ*
× ℝ*) ∖ ◡
< ) |
cmin 8118 | class − |
cneg 8119 | class -𝐴 |
df-sub 8120 | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
df-neg 8121 | ⊢ -𝐴 = (0 − 𝐴) |
creap 8521 | class
#ℝ |
df-reap 8522 | ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} |
cap 8528 | class # |
df-ap 8529 | ⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} |
cdiv 8618 | class / |
df-div 8619 | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥)) |
cn 8908 | class ℕ |
df-inn 8909 | ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
c2 8959 | class 2 |
c3 8960 | class 3 |
c4 8961 | class 4 |
c5 8962 | class 5 |
c6 8963 | class 6 |
c7 8964 | class 7 |
c8 8965 | class 8 |
c9 8966 | class 9 |
df-2 8967 | ⊢ 2 = (1 + 1) |
df-3 8968 | ⊢ 3 = (2 + 1) |
df-4 8969 | ⊢ 4 = (3 + 1) |
df-5 8970 | ⊢ 5 = (4 + 1) |
df-6 8971 | ⊢ 6 = (5 + 1) |
df-7 8972 | ⊢ 7 = (6 + 1) |
df-8 8973 | ⊢ 8 = (7 + 1) |
df-9 8974 | ⊢ 9 = (8 + 1) |
cn0 9165 | class
ℕ0 |
df-n0 9166 | ⊢ ℕ0 = (ℕ
∪ {0}) |
cxnn0 9228 | class
ℕ0* |
df-xnn0 9229 | ⊢ ℕ0* =
(ℕ0 ∪ {+∞}) |
cz 9242 | class ℤ |
df-z 9243 | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
cdc 9373 | class ;𝐴𝐵 |
df-dec 9374 | ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
cuz 9517 | class
ℤ≥ |
df-uz 9518 | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
cq 9608 | class ℚ |
df-q 9609 | ⊢ ℚ = ( / “ (ℤ
× ℕ)) |
crp 9640 | class
ℝ+ |
df-rp 9641 | ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 <
𝑥} |
cxne 9756 | class -𝑒𝐴 |
cxad 9757 | class
+𝑒 |
cxmu 9758 | class
·e |
df-xneg 9759 | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
df-xadd 9760 | ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 = +∞,
if(𝑦 = -∞, 0,
+∞), if(𝑥 = -∞,
if(𝑦 = +∞, 0,
-∞), if(𝑦 = +∞,
+∞, if(𝑦 = -∞,
-∞, (𝑥 + 𝑦)))))) |
df-xmul 9761 | ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if((𝑥 = 0 ∨
𝑦 = 0), 0, if((((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |
cioo 9875 | class (,) |
cioc 9876 | class (,] |
cico 9877 | class [,) |
cicc 9878 | class [,] |
df-ioo 9879 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
df-ioc 9880 | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
df-ico 9881 | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
df-icc 9882 | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
cfz 9995 | class ... |
df-fz 9996 | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
cfzo 10128 | class ..^ |
df-fzo 10129 | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
cfl 10254 | class ⌊ |
cceil 10255 | class ⌈ |
df-fl 10256 | ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) |
df-ceil 10257 | ⊢ ⌈ = (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
cmo 10308 | class mod |
df-mod 10309 | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
cseq 10431 | class seq𝑀( + , 𝐹) |
df-seqfrec 10432 | ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
cexp 10505 | class ↑ |
df-exp 10506 | ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦))))) |
cfa 10689 | class ! |
df-fac 10690 | ⊢ ! = ({〈0, 1〉} ∪ seq1( ·
, I )) |
cbc 10711 | class C |
df-bc 10712 | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
chash 10739 | class ♯ |
df-ihash 10740 | ⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})) |
cshi 10807 | class shift |
df-shft 10808 | ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
ccj 10832 | class ∗ |
cre 10833 | class ℜ |
cim 10834 | class ℑ |
df-cj 10835 | ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
df-re 10836 | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
df-im 10837 | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
csqrt 10989 | class √ |
cabs 10990 | class abs |
df-rsqrt 10991 | ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) |
df-abs 10992 | ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) |
cli 11270 | class ⇝ |
df-clim 11271 | ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
csu 11345 | class Σ𝑘 ∈ 𝐴 𝐵 |
df-sumdc 11346 | ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
cprod 11542 | class ∏𝑘 ∈ 𝐴 𝐵 |
df-proddc 11543 | ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
ce 11634 | class exp |
ceu 11635 | class e |
csin 11636 | class sin |
ccos 11637 | class cos |
ctan 11638 | class tan |
cpi 11639 | class π |
df-ef 11640 | ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
df-e 11641 | ⊢ e =
(exp‘1) |
df-sin 11642 | ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
df-cos 11643 | ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
df-tan 11644 | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
df-pi 11645 | ⊢ π = inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) |
ctau 11766 | class τ |
df-tau 11767 | ⊢ τ = inf((ℝ+ ∩
(◡cos “ {1})), ℝ, <
) |
cdvds 11778 | class ∥ |
df-dvds 11779 | ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} |
cgcd 11926 | class gcd |
df-gcd 11927 | ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
clcm 12043 | class lcm |
df-lcm 12044 | ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
cprime 12090 | class ℙ |
df-prm 12091 | ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} |
cnumer 12164 | class numer |
cdenom 12165 | class denom |
df-numer 12166 | ⊢ numer = (𝑦 ∈ ℚ ↦ (1st
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
df-denom 12167 | ⊢ denom = (𝑦 ∈ ℚ ↦ (2nd
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
codz 12191 | class
odℤ |
cphi 12192 | class ϕ |
df-odz 12193 | ⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |
df-phi 12194 | ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) |
cpc 12267 | class pCnt |
df-pc 12268 | ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
cgz 12350 | class ℤ[i] |
df-gz 12351 | ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧
(ℑ‘𝑥) ∈
ℤ)} |
cstr 12441 | class Struct |
cnx 12442 | class ndx |
csts 12443 | class sSet |
cslot 12444 | class Slot 𝐴 |
cbs 12445 | class Base |
cress 12446 | class
↾s |
df-struct 12447 | ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ ×
ℕ)) ∧ Fun (𝑓
∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} |
df-ndx 12448 | ⊢ ndx = ( I ↾ ℕ) |
df-slot 12449 | ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) |
df-base 12451 | ⊢ Base = Slot 1 |
df-sets 12452 | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
df-iress 12453 | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
cplusg 12518 | class +g |
cmulr 12519 | class .r |
cstv 12520 | class
*𝑟 |
csca 12521 | class Scalar |
cvsca 12522 | class
·𝑠 |
cip 12523 | class
·𝑖 |
cts 12524 | class TopSet |
cple 12525 | class le |
coc 12526 | class oc |
cds 12527 | class dist |
cunif 12528 | class UnifSet |
chom 12529 | class Hom |
cco 12530 | class comp |
df-plusg 12531 | ⊢ +g = Slot 2 |
df-mulr 12532 | ⊢ .r = Slot 3 |
df-starv 12533 | ⊢ *𝑟 = Slot
4 |
df-sca 12534 | ⊢ Scalar = Slot 5 |
df-vsca 12535 | ⊢ ·𝑠 = Slot
6 |
df-ip 12536 | ⊢
·𝑖 = Slot 8 |
df-tset 12537 | ⊢ TopSet = Slot 9 |
df-ple 12538 | ⊢ le = Slot ;10 |
df-ocomp 12539 | ⊢ oc = Slot ;11 |
df-ds 12540 | ⊢ dist = Slot ;12 |
df-unif 12541 | ⊢ UnifSet = Slot ;13 |
df-hom 12542 | ⊢ Hom = Slot ;14 |
df-cco 12543 | ⊢ comp = Slot ;15 |
crest 12636 | class
↾t |
ctopn 12637 | class TopOpen |
df-rest 12638 | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
df-topn 12639 | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t
(Base‘𝑤))) |
ctg 12651 | class topGen |
cpt 12652 | class
∏t |
c0g 12653 | class 0g |
cgsu 12654 | class
Σg |
df-0g 12655 | ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
df-gsum 12656 | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
df-topgen 12657 | ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
df-pt 12658 | ⊢ ∏t = (𝑓 ∈ V ↦
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
cprds 12659 | class Xs |
cpws 12660 | class
↑s |
df-prds 12661 | ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
df-pws 12663 | ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) |
cplusf 12664 | class
+𝑓 |
cmgm 12665 | class Mgm |
df-plusf 12666 | ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
df-mgm 12667 | ⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} |
csgrp 12699 | class Smgrp |
df-sgrp 12700 | ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
cmnd 12709 | class Mnd |
df-mnd 12710 | ⊢ Mnd = {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
cmhm 12739 | class MndHom |
csubmnd 12740 | class SubMnd |
df-mhm 12741 | ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
df-submnd 12742 | ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣
((0g‘𝑠)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) |
cgrp 12767 | class Grp |
cminusg 12768 | class invg |
csg 12769 | class -g |
df-grp 12770 | ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} |
df-minusg 12771 | ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
df-sbg 12772 | ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) |
cmg 12872 | class .g |
df-mulg 12873 | ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔),
⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) |
ccmn 12915 | class CMnd |
cabl 12916 | class Abel |
df-cmn 12917 | ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
df-abl 12918 | ⊢ Abel = (Grp ∩ CMnd) |
cmgp 12957 | class mulGrp |
df-mgp 12958 | ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx),
(.r‘𝑤)〉)) |
cur 12968 | class 1r |
df-ur 12969 | ⊢ 1r = (0g
∘ mulGrp) |
csrg 12972 | class SRing |
df-srg 12973 | ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
crg 13005 | class Ring |
ccrg 13006 | class CRing |
df-ring 13007 | ⊢ Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
df-cring 13008 | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
coppr 13064 | class
oppr |
df-oppr 13065 | ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
(.r‘𝑓)〉)) |
cdsr 13080 | class
∥r |
cui 13081 | class Unit |
cir 13082 | class Irred |
df-dvdsr 13083 | ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
df-unit 13084 | ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
df-irred 13085 | ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
cinvr 13114 | class invr |
df-invr 13115 | ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
cdvr 13125 | class /r |
df-dvr 13126 | ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) |
crh 13142 | class RingHom |
crs 13143 | class RingIso |
df-rnghom 13144 | ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
df-rngiso 13145 | ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
cpsmet 13146 | class PsMet |
cxmet 13147 | class ∞Met |
cmet 13148 | class Met |
cbl 13149 | class ball |
cfbas 13150 | class fBas |
cfg 13151 | class filGen |
cmopn 13152 | class MetOpen |
cmetu 13153 | class metUnif |
df-psmet 13154 | ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
df-xmet 13155 | ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
df-met 13156 | ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚
(𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |
df-bl 13157 | ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) |
df-mopn 13158 | ⊢ MetOpen = (𝑑 ∈ ∪ ran
∞Met ↦ (topGen‘ran (ball‘𝑑))) |
df-fbas 13159 | ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) |
df-fg 13160 | ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |
df-metu 13161 | ⊢ metUnif = (𝑑 ∈ ∪ ran
PsMet ↦ ((dom dom 𝑑
× dom dom 𝑑)filGenran
(𝑎 ∈
ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) |
ctop 13162 | class Top |
df-top 13163 | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
ctopon 13175 | class TopOn |
df-topon 13176 | ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
ctps 13195 | class TopSp |
df-topsp 13196 | ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} |
ctb 13207 | class TopBases |
df-bases 13208 | ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
ccld 13259 | class Clsd |
cnt 13260 | class int |
ccl 13261 | class cls |
df-cld 13262 | ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
df-ntr 13263 | ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
df-cls 13264 | ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) |
cnei 13305 | class nei |
df-nei 13306 | ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
ccn 13352 | class Cn |
ccnp 13353 | class CnP |
clm 13354 | class
⇝𝑡 |
df-cn 13355 | ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
df-cnp 13356 | ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
df-lm 13357 | ⊢ ⇝𝑡 =
(𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
ctx 13419 | class
×t |
df-tx 13420 | ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
chmeo 13467 | class Homeo |
df-hmeo 13468 | ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) |
cxms 13503 | class ∞MetSp |
cms 13504 | class MetSp |
ctms 13505 | class toMetSp |
df-xms 13506 | ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
df-ms 13507 | ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
df-tms 13508 | ⊢ toMetSp = (𝑑 ∈ ∪ ran
∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) |
ccncf 13724 | class –cn→ |
df-cncf 13725 | ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
climc 13790 | class
limℂ |
cdv 13791 | class D |
df-limced 13792 | ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm
ℂ), 𝑥 ∈ ℂ
↦ {𝑦 ∈ ℂ
∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
df-dvap 13793 | ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm
𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
clog 13944 | class log |
ccxp 13945 | class
↑𝑐 |
df-relog 13946 | ⊢ log = ◡(exp ↾ ℝ) |
df-rpcxp 13947 | ⊢ ↑𝑐 = (𝑥 ∈ ℝ+,
𝑦 ∈ ℂ ↦
(exp‘(𝑦 ·
(log‘𝑥)))) |
clogb 14028 | class
logb |
df-logb 14029 | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0})
↦ ((log‘𝑦) /
(log‘𝑥))) |
clgs 14065 | class
/L |
df-lgs 14066 | ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |
The
list of syntax, axioms (ax-) and definitions (df-) for the starts here |
wdcin 14201 | wff 𝐴 DECIDin
𝐵 |
df-dcin 14202 | ⊢ (𝐴 DECIDin
𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
wbd 14220 | wff BOUNDED 𝜑 |
ax-bd0 14221 | ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (BOUNDED 𝜑 → BOUNDED
𝜓) |
ax-bdim 14222 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 → 𝜓) |
ax-bdan 14223 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 ∧ 𝜓) |
ax-bdor 14224 | ⊢ BOUNDED 𝜑
& ⊢ BOUNDED 𝜓 ⇒ ⊢ BOUNDED (𝜑 ∨ 𝜓) |
ax-bdn 14225 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED ¬
𝜑 |
ax-bdal 14226 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED
∀𝑥 ∈ 𝑦 𝜑 |
ax-bdex 14227 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED
∃𝑥 ∈ 𝑦 𝜑 |
ax-bdeq 14228 | ⊢ BOUNDED 𝑥 = 𝑦 |
ax-bdel 14229 | ⊢ BOUNDED 𝑥 ∈ 𝑦 |
ax-bdsb 14230 | ⊢ BOUNDED 𝜑 ⇒ ⊢ BOUNDED [𝑦 / 𝑥]𝜑 |
wbdc 14248 | wff BOUNDED
𝐴 |
df-bdc 14249 | ⊢ (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥 ∈ 𝐴) |
ax-bdsep 14292 | ⊢ BOUNDED 𝜑 ⇒ ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
ax-bj-d0cl 14332 | ⊢ BOUNDED 𝜑 ⇒ ⊢ DECID 𝜑 |
wind 14334 | wff Ind 𝐴 |
df-bj-ind 14335 | ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) |
ax-infvn 14349 | ⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) |
ax-bdsetind 14376 | ⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) |
ax-inf2 14384 | ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) |
ax-strcoll 14390 | ⊢ ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
ax-sscoll 14395 | ⊢ ∀𝑎∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
ax-ddkcomp 14397 | ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝐵) → 𝑥 ≤ 𝐵))) |
walsi 14477 | wff ∀!𝑥(𝜑 → 𝜓) |
walsc 14478 | wff ∀!𝑥 ∈ 𝐴𝜑 |
df-alsi 14479 | ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) |
df-alsc 14480 | ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |