ILE Home Intuitionistic Logic Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ 𝜑
wi 4wff (𝜑𝜓)
ax-mp 5𝜑    &   (𝜑𝜓)       𝜓
ax-1 6(𝜑 → (𝜓𝜑))
ax-2 7((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
wa 103wff (𝜑𝜓)
wb 104wff (𝜑𝜓)
ax-ia1 105((𝜑𝜓) → 𝜑)
ax-ia2 106((𝜑𝜓) → 𝜓)
ax-ia3 107(𝜑 → (𝜓 → (𝜑𝜓)))
df-bi 116(((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
ax-in1 609((𝜑 → ¬ 𝜑) → ¬ 𝜑)
ax-in2 610𝜑 → (𝜑𝜓))
wo 703wff (𝜑𝜓)
ax-io 704(((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
wstab 825wff STAB 𝜑
df-stab 826(STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
wdc 829wff DECID 𝜑
df-dc 830(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
w3o 972wff (𝜑𝜓𝜒)
w3a 973wff (𝜑𝜓𝜒)
df-3or 974((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
df-3an 975((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
wal 1346wff 𝑥𝜑
cv 1347class 𝑥
wceq 1348wff 𝐴 = 𝐵
wtru 1349wff
df-tru 1351(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
wfal 1353wff
df-fal 1354(⊥ ↔ ¬ ⊤)
wxo 1370wff (𝜑𝜓)
df-xor 1371((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
ax-5 1440(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-7 1441(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-gen 1442𝜑       𝑥𝜑
wnf 1453wff 𝑥𝜑
df-nf 1454(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
wex 1485wff 𝑥𝜑
ax-ie1 1486(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-ie2 1487(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
ax-8 1497(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
ax-10 1498(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-11 1499(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
ax-i12 1500(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-bndl 1502(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-4 1503(∀𝑥𝜑𝜑)
ax-17 1519(𝜑 → ∀𝑥𝜑)
ax-i9 1523𝑥 𝑥 = 𝑦
ax-ial 1527(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-i5r 1528((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))
ax-10o 1709(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
wsb 1755wff [𝑦 / 𝑥]𝜑
df-sb 1756([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
ax-16 1807(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
ax-11o 1816(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
weu 2019wff ∃!𝑥𝜑
wmo 2020wff ∃*𝑥𝜑
df-eu 2022(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
df-mo 2023(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
wcel 2141wff 𝐴𝐵
ax-13 2143(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
ax-14 2144(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
ax-ext 2152(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
cab 2156class {𝑥𝜑}
df-clab 2157(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
df-cleq 2163(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-clel 2166(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
wnfc 2299wff 𝑥𝐴
df-nfc 2301(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
wne 2340wff 𝐴𝐵
df-ne 2341(𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
wnel 2435wff 𝐴𝐵
df-nel 2436(𝐴𝐵 ↔ ¬ 𝐴𝐵)
wral 2448wff 𝑥𝐴 𝜑
wrex 2449wff 𝑥𝐴 𝜑
wreu 2450wff ∃!𝑥𝐴 𝜑
wrmo 2451wff ∃*𝑥𝐴 𝜑
crab 2452class {𝑥𝐴𝜑}
df-ral 2453(∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
df-rex 2454(∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
df-reu 2455(∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
df-rmo 2456(∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
df-rab 2457{𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
cvv 2730class V
df-v 2732V = {𝑥𝑥 = 𝑥}
wcdeq 2938wff CondEq(𝑥 = 𝑦𝜑)
df-cdeq 2939(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
wsbc 2955wff [𝐴 / 𝑥]𝜑
df-sbc 2956([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
csb 3049class 𝐴 / 𝑥𝐵
df-csb 3050𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
cdif 3118class (𝐴𝐵)
cun 3119class (𝐴𝐵)
cin 3120class (𝐴𝐵)
wss 3121wff 𝐴𝐵
df-dif 3123(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
df-un 3125(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-in 3127(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-ss 3134(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
c0 3414class
df-nul 3415∅ = (V ∖ V)
cif 3526class if(𝜑, 𝐴, 𝐵)
df-if 3527if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
cpw 3566class 𝒫 𝐴
df-pw 3568𝒫 𝐴 = {𝑥𝑥𝐴}
csn 3583class {𝐴}
cpr 3584class {𝐴, 𝐵}
ctp 3585class {𝐴, 𝐵, 𝐶}
cop 3586class 𝐴, 𝐵
cotp 3587class 𝐴, 𝐵, 𝐶
df-sn 3589{𝐴} = {𝑥𝑥 = 𝐴}
df-pr 3590{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
df-tp 3591{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
df-op 3592𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
df-ot 3593𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
cuni 3796class 𝐴
df-uni 3797 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
cint 3831class 𝐴
df-int 3832 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
ciun 3873class 𝑥𝐴 𝐵
ciin 3874class 𝑥𝐴 𝐵
df-iun 3875 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
df-iin 3876 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
wdisj 3966wff Disj 𝑥𝐴 𝐵
df-disj 3967(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
wbr 3989wff 𝐴𝑅𝐵
df-br 3990(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
copab 4049class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
cmpt 4050class (𝑥𝐴𝐵)
df-opab 4051{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
df-mpt 4052(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
wtr 4087wff Tr 𝐴
df-tr 4088(Tr 𝐴 𝐴𝐴)
ax-coll 4104𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
ax-sep 4107𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
ax-nul 4115𝑥𝑦 ¬ 𝑦𝑥
ax-pow 4160𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
wem 4180wff EXMID
df-exmid 4181(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
ax-pr 4194𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
cep 4272class E
cid 4273class I
df-eprel 4274 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
df-id 4278 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
wpo 4279wff 𝑅 Po 𝐴
wor 4280wff 𝑅 Or 𝐴
df-po 4281(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
df-iso 4282(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
wfrfor 4312wff FrFor 𝑅𝐴𝑆
wfr 4313wff 𝑅 Fr 𝐴
wse 4314wff 𝑅 Se 𝐴
wwe 4315wff 𝑅 We 𝐴
df-frfor 4316( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
df-frind 4317(𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
df-se 4318(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
df-wetr 4319(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
word 4347wff Ord 𝐴
con0 4348class On
wlim 4349wff Lim 𝐴
csuc 4350class suc 𝐴
df-iord 4351(Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
df-on 4353On = {𝑥 ∣ Ord 𝑥}
df-ilim 4354(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
df-suc 4356suc 𝐴 = (𝐴 ∪ {𝐴})
ax-un 4418𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
ax-setind 4521(∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-iinf 4572𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
com 4574class ω
df-iom 4575ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
cxp 4609class (𝐴 × 𝐵)
ccnv 4610class 𝐴
cdm 4611class dom 𝐴
crn 4612class ran 𝐴
cres 4613class (𝐴𝐵)
cima 4614class (𝐴𝐵)
ccom 4615class (𝐴𝐵)
wrel 4616wff Rel 𝐴
df-xp 4617(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
df-rel 4618(Rel 𝐴𝐴 ⊆ (V × V))
df-cnv 4619𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
df-co 4620(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
df-dm 4621dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
df-rn 4622ran 𝐴 = dom 𝐴
df-res 4623(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
df-ima 4624(𝐴𝐵) = ran (𝐴𝐵)
cio 5158class (℩𝑥𝜑)
df-iota 5160(℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wfun 5192wff Fun 𝐴
wfn 5193wff 𝐴 Fn 𝐵
wf 5194wff 𝐹:𝐴𝐵
wf1 5195wff 𝐹:𝐴1-1𝐵
wfo 5196wff 𝐹:𝐴onto𝐵
wf1o 5197wff 𝐹:𝐴1-1-onto𝐵
cfv 5198class (𝐹𝐴)
wiso 5199wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
df-fun 5200(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
df-fn 5201(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
df-f 5202(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
df-f1 5203(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
df-fo 5204(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
df-f1o 5205(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
df-fv 5206(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
df-isom 5207(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
crio 5808class (𝑥𝐴 𝜑)
df-riota 5809(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
co 5853class (𝐴𝐹𝐵)
coprab 5854class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
cmpo 5855class (𝑥𝐴, 𝑦𝐵𝐶)
df-ov 5856(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
df-oprab 5857{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
df-mpo 5858(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
cof 6059class 𝑓 𝑅
cofr 6060class 𝑟 𝑅
df-of 6061𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
df-ofr 6062𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
c1st 6117class 1st
c2nd 6118class 2nd
df-1st 61191st = (𝑥 ∈ V ↦ dom {𝑥})
df-2nd 61202nd = (𝑥 ∈ V ↦ ran {𝑥})
ctpos 6223class tpos 𝐹
df-tpos 6224tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
wsmo 6264wff Smo 𝐴
df-smo 6265(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
crecs 6283class recs(𝐹)
df-recs 6284recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
crdg 6348class rec(𝐹, 𝐼)
df-irdg 6349rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
cfrec 6369class frec(𝐹, 𝐼)
df-frec 6370frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
c1o 6388class 1o
c2o 6389class 2o
c3o 6390class 3o
c4o 6391class 4o
coa 6392class +o
comu 6393class ·o
coei 6394class o
df-1o 63951o = suc ∅
df-2o 63962o = suc 1o
df-3o 63973o = suc 2o
df-4o 63984o = suc 3o
df-oadd 6399 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
df-omul 6400 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
df-oexpi 6401o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
wer 6510wff 𝑅 Er 𝐴
cec 6511class [𝐴]𝑅
cqs 6512class (𝐴 / 𝑅)
df-er 6513(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
df-ec 6515[𝐴]𝑅 = (𝑅 “ {𝐴})
df-qs 6519(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
cmap 6626class 𝑚
cpm 6627class pm
df-map 6628𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
df-pm 6629pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
cixp 6676class X𝑥𝐴 𝐵
df-ixp 6677X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
cen 6716class
cdom 6717class
cfn 6718class Fin
df-en 6719 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
df-dom 6720 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
df-fin 6721Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
cfi 6945class fi
df-fi 6946fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
csup 6959class sup(𝐴, 𝐵, 𝑅)
cinf 6960class inf(𝐴, 𝐵, 𝑅)
df-sup 6961sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
df-inf 6962inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
cdju 7014class (𝐴𝐵)
df-dju 7015(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
cinl 7022class inl
cinr 7023class inr
df-inl 7024inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
df-inr 7025inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
cdjucase 7060class case(𝑅, 𝑆)
df-case 7061case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
cdjud 7079class (𝑅d 𝑆)
df-djud 7080(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
xnninf 7096class
df-nninf 7097 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
comni 7110class Omni
df-omni 7111Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
cmarkov 7127class Markov
df-markov 7128Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
cwomni 7139class WOmni
df-womni 7140WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
ccrd 7156class card
df-card 7157card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
wac 7182wff CHOICE
df-ac 7183(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
wacc 7224wff CCHOICE
df-cc 7225(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
cnpi 7234class N
cpli 7235class +N
cmi 7236class ·N
clti 7237class <N
cplpq 7238class +pQ
cmpq 7239class ·pQ
cltpq 7240class <pQ
ceq 7241class ~Q
cnq 7242class Q
c1q 7243class 1Q
cplq 7244class +Q
cmq 7245class ·Q
crq 7246class *Q
cltq 7247class <Q
ceq0 7248class ~Q0
cnq0 7249class Q0
c0q0 7250class 0Q0
cplq0 7251class +Q0
cmq0 7252class ·Q0
cnp 7253class P
c1p 7254class 1P
cpp 7255class +P
cmp 7256class ·P
cltp 7257class <P
cer 7258class ~R
cnr 7259class R
c0r 7260class 0R
c1r 7261class 1R
cm1r 7262class -1R
cplr 7263class +R
cmr 7264class ·R
cltr 7265class <R
df-ni 7266N = (ω ∖ {∅})
df-pli 7267 +N = ( +o ↾ (N × N))
df-mi 7268 ·N = ( ·o ↾ (N × N))
df-lti 7269 <N = ( E ∩ (N × N))
df-plpq 7306 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-mpq 7307 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-ltpq 7308 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
df-enq 7309 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
df-nqqs 7310Q = ((N × N) / ~Q )
df-plqqs 7311 +Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ +pQ𝑢, 𝑓⟩)] ~Q ))}
df-mqqs 7312 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
df-1nqqs 73131Q = [⟨1o, 1o⟩] ~Q
df-rq 7314*Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
df-ltnqqs 7315 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
df-enq0 7386 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
df-nq0 7387Q0 = ((ω × N) / ~Q0 )
df-0nq0 73880Q0 = [⟨∅, 1o⟩] ~Q0
df-plq0 7389 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-mq0 7390 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-inp 7428P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
df-i1p 74291P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
df-iplp 7430 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
df-imp 7431 ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
df-iltp 7432<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
df-enr 7688 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
df-nr 7689R = ((P × P) / ~R )
df-plr 7690 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 7691 ·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
df-ltr 7692 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
df-0r 76930R = [⟨1P, 1P⟩] ~R
df-1r 76941R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 7695-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 7772class
cr 7773class
cc0 7774class 0
c1 7775class 1
ci 7776class i
caddc 7777class +
cltrr 7778class <
cmul 7779class ·
df-c 7780ℂ = (R × R)
df-0 77810 = ⟨0R, 0R
df-1 77821 = ⟨1R, 0R
df-i 7783i = ⟨0R, 1R
df-r 7784ℝ = (R × {0R})
df-add 7785 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
df-mul 7786 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
df-lt 7787 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
ax-cnex 7865ℂ ∈ V
ax-resscn 7866ℝ ⊆ ℂ
ax-1cn 78671 ∈ ℂ
ax-1re 78681 ∈ ℝ
ax-icn 7869i ∈ ℂ
ax-addcl 7870((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
ax-addrcl 7871((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
ax-mulcl 7872((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
ax-mulrcl 7873((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
ax-addcom 7874((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
ax-mulcom 7875((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
ax-addass 7876((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-mulass 7877((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-distr 7878((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-i2m1 7879((i · i) + 1) = 0
ax-0lt1 78800 < 1
ax-1rid 7881(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
ax-0id 7882(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
ax-rnegex 7883(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
ax-precex 7884((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
ax-cnre 7885(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
ax-pre-ltirr 7886(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
ax-pre-ltwlin 7887((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
ax-pre-lttrn 7888((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
ax-pre-apti 7889((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
ax-pre-ltadd 7890((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
ax-pre-mulgt0 7891((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
ax-pre-mulext 7892((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
ax-arch 7893(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
ax-caucvg 7894𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
ax-pre-suploc 7895(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
ax-addf 7896 + :(ℂ × ℂ)⟶ℂ
ax-mulf 7897 · :(ℂ × ℂ)⟶ℂ
cpnf 7951class +∞
cmnf 7952class -∞
cxr 7953class *
clt 7954class <
cle 7955class
df-pnf 7956+∞ = 𝒫
df-mnf 7957-∞ = 𝒫 +∞
df-xr 7958* = (ℝ ∪ {+∞, -∞})
df-ltxr 7959 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
df-le 7960 ≤ = ((ℝ* × ℝ*) ∖ < )
cmin 8090class
cneg 8091class -𝐴
df-sub 8092 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
df-neg 8093-𝐴 = (0 − 𝐴)
creap 8493class #
df-reap 8494 # = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
cap 8500class #
df-ap 8501 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
cdiv 8589class /
df-div 8590 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
cn 8878class
df-inn 8879ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
c2 8929class 2
c3 8930class 3
c4 8931class 4
c5 8932class 5
c6 8933class 6
c7 8934class 7
c8 8935class 8
c9 8936class 9
df-2 89372 = (1 + 1)
df-3 89383 = (2 + 1)
df-4 89394 = (3 + 1)
df-5 89405 = (4 + 1)
df-6 89416 = (5 + 1)
df-7 89427 = (6 + 1)
df-8 89438 = (7 + 1)
df-9 89449 = (8 + 1)
cn0 9135class 0
df-n0 91360 = (ℕ ∪ {0})
cxnn0 9198class 0*
df-xnn0 91990* = (ℕ0 ∪ {+∞})
cz 9212class
df-z 9213ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
cdc 9343class 𝐴𝐵
df-dec 9344𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
cuz 9487class
df-uz 9488 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
cq 9578class
df-q 9579ℚ = ( / “ (ℤ × ℕ))
crp 9610class +
df-rp 9611+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
cxne 9726class -𝑒𝐴
cxad 9727class +𝑒
cxmu 9728class ·e
df-xneg 9729-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 9730 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
df-xmul 9731 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
cioo 9845class (,)
cioc 9846class (,]
cico 9847class [,)
cicc 9848class [,]
df-ioo 9849(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
df-ioc 9850(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
df-ico 9851[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
df-icc 9852[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
cfz 9965class ...
df-fz 9966... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
cfzo 10098class ..^
df-fzo 10099..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
cfl 10224class
cceil 10225class
df-fl 10226⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
df-ceil 10227⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
cmo 10278class mod
df-mod 10279 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
cseq 10401class seq𝑀( + , 𝐹)
df-seqfrec 10402seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
cexp 10475class
df-exp 10476↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
cfa 10659class !
df-fac 10660! = ({⟨0, 1⟩} ∪ seq1( · , I ))
cbc 10681class C
df-bc 10682C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
chash 10709class
df-ihash 10710♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
cshi 10778class shift
df-shft 10779 shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
ccj 10803class
cre 10804class
cim 10805class
df-cj 10806∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
df-re 10807ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
df-im 10808ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
csqrt 10960class
cabs 10961class abs
df-rsqrt 10962√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
df-abs 10963abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
cli 11241class
df-clim 11242 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
csu 11316class Σ𝑘𝐴 𝐵
df-sumdc 11317Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
cprod 11513class 𝑘𝐴 𝐵
df-proddc 11514𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
ce 11605class exp
ceu 11606class e
csin 11607class sin
ccos 11608class cos
ctan 11609class tan
cpi 11610class π
df-ef 11611exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
df-e 11612e = (exp‘1)
df-sin 11613sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
df-cos 11614cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
df-tan 11615tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
df-pi 11616π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
ctau 11737class τ
df-tau 11738τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
cdvds 11749class
df-dvds 11750 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
cgcd 11897class gcd
df-gcd 11898 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
clcm 12014class lcm
df-lcm 12015 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
cprime 12061class
df-prm 12062ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
cnumer 12135class numer
cdenom 12136class denom
df-numer 12137numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
df-denom 12138denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
codz 12162class od
cphi 12163class ϕ
df-odz 12164od = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥𝑚) − 1)}, ℝ, < )))
df-phi 12165ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
cpc 12238class pCnt
df-pc 12239 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
cgz 12321class ℤ[i]
df-gz 12322ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
cstr 12412class Struct
cnx 12413class ndx
csts 12414class sSet
cslot 12415class Slot 𝐴
cbs 12416class Base
cress 12417class s
df-struct 12418 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
df-ndx 12419ndx = ( I ↾ ℕ)
df-slot 12420Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
df-base 12422Base = Slot 1
df-sets 12423 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
df-ress 12424s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
cplusg 12480class +g
cmulr 12481class .r
cstv 12482class *𝑟
csca 12483class Scalar
cvsca 12484class ·𝑠
cip 12485class ·𝑖
cts 12486class TopSet
cple 12487class le
coc 12488class oc
cds 12489class dist
cunif 12490class UnifSet
chom 12491class Hom
cco 12492class comp
df-plusg 12493+g = Slot 2
df-mulr 12494.r = Slot 3
df-starv 12495*𝑟 = Slot 4
df-sca 12496Scalar = Slot 5
df-vsca 12497 ·𝑠 = Slot 6
df-ip 12498·𝑖 = Slot 8
df-tset 12499TopSet = Slot 9
df-ple 12500le = Slot 10
df-ocomp 12501oc = Slot 11
df-ds 12502dist = Slot 12
df-unif 12503UnifSet = Slot 13
df-hom 12504Hom = Slot 14
df-cco 12505comp = Slot 15
crest 12579class t
ctopn 12580class TopOpen
df-rest 12581t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
df-topn 12582TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
ctg 12594class topGen
cpt 12595class t
c0g 12596class 0g
cgsu 12597class Σg
df-0g 125980g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
df-gsum 12599 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
df-topgen 12600topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
df-pt 12601t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
cprds 12602class Xs
cpws 12603class s
df-prds 12604Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
df-pws 12606s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
cplusf 12607class +𝑓
cmgm 12608class Mgm
df-plusf 12609+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
df-mgm 12610Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
csgrp 12642class Smgrp
df-sgrp 12643Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
cmnd 12652class Mnd
df-mnd 12653Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
cmhm 12681class MndHom
csubmnd 12682class SubMnd
df-mhm 12683 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
df-submnd 12684SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
cgrp 12708class Grp
cminusg 12709class invg
csg 12710class -g
df-grp 12711Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
df-minusg 12712invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑤 ∈ (Base‘𝑔)(𝑤(+g𝑔)𝑥) = (0g𝑔))))
df-sbg 12713-g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
cpsmet 12773class PsMet
cxmet 12774class ∞Met
cmet 12775class Met
cbl 12776class ball
cfbas 12777class fBas
cfg 12778class filGen
cmopn 12779class MetOpen
cmetu 12780class metUnif
df-psmet 12781PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-xmet 12782∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-met 12783Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
df-bl 12784ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
df-mopn 12785MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
df-fbas 12786fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
df-fg 12787filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
df-metu 12788metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
ctop 12789class Top
df-top 12790Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
ctopon 12802class TopOn
df-topon 12803TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
ctps 12822class TopSp
df-topsp 12823TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
ctb 12834class TopBases
df-bases 12835TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
ccld 12886class Clsd
cnt 12887class int
ccl 12888class cls
df-cld 12889Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
df-ntr 12890int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
df-cls 12891cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
cnei 12932class nei
df-nei 12933nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
ccn 12979class Cn
ccnp 12980class CnP
clm 12981class 𝑡
df-cn 12982 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
df-cnp 12983 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
df-lm 12984𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
ctx 13046class ×t
df-tx 13047 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
chmeo 13094class Homeo
df-hmeo 13095Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
cxms 13130class ∞MetSp
cms 13131class MetSp
ctms 13132class toMetSp
df-xms 13133∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
df-ms 13134MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
df-tms 13135toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
ccncf 13351class cn
df-cncf 13352cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
climc 13417class lim
cdv 13418class D
df-limced 13419 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
df-dvap 13420 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
clog 13571class log
ccxp 13572class 𝑐
df-relog 13573log = (exp ↾ ℝ)
df-rpcxp 13574𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
clogb 13655class logb
df-logb 13656 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
clgs 13692class /L
df-lgs 13693 /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 13828wff 𝐴 DECIDin 𝐵
df-dcin 13829(𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
wbd 13847wff BOUNDED 𝜑
ax-bd0 13848(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
ax-bdim 13849BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdan 13850BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdor 13851BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdn 13852BOUNDED 𝜑       BOUNDED ¬ 𝜑
ax-bdal 13853BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdex 13854BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdeq 13855BOUNDED 𝑥 = 𝑦
ax-bdel 13856BOUNDED 𝑥𝑦
ax-bdsb 13857BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
wbdc 13875wff BOUNDED 𝐴
df-bdc 13876(BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
ax-bdsep 13919BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
ax-bj-d0cl 13959BOUNDED 𝜑       DECID 𝜑
wind 13961wff Ind 𝐴
df-bj-ind 13962(Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
ax-infvn 13976𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))
ax-bdsetind 14003BOUNDED 𝜑       (∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-inf2 14011𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
ax-strcoll 14017𝑎(∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
ax-sscoll 14022𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
ax-ddkcomp 14024(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 𝑦𝑥 ∧ ((𝐵𝑅 ∧ ∀𝑦𝐴 𝑦𝐵) → 𝑥𝐵)))
walsi 14105wff ∀!𝑥(𝜑𝜓)
walsc 14106wff ∀!𝑥𝐴𝜑
df-alsi 14107(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
df-alsc 14108(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
  Copyright terms: Public domain W3C validator