ILE Home Intuitionistic Logic Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ 𝜑
wi 4wff (𝜑𝜓)
ax-mp 5𝜑    &   (𝜑𝜓)       𝜓
ax-1 6(𝜑 → (𝜓𝜑))
ax-2 7((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
wa 103wff (𝜑𝜓)
wb 104wff (𝜑𝜓)
ax-ia1 105((𝜑𝜓) → 𝜑)
ax-ia2 106((𝜑𝜓) → 𝜓)
ax-ia3 107(𝜑 → (𝜓 → (𝜑𝜓)))
df-bi 116(((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
ax-in1 603((𝜑 → ¬ 𝜑) → ¬ 𝜑)
ax-in2 604𝜑 → (𝜑𝜓))
wo 697wff (𝜑𝜓)
ax-io 698(((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
wstab 815wff STAB 𝜑
df-stab 816(STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
wdc 819wff DECID 𝜑
df-dc 820(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
w3o 961wff (𝜑𝜓𝜒)
w3a 962wff (𝜑𝜓𝜒)
df-3or 963((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
df-3an 964((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
wal 1329wff 𝑥𝜑
cv 1330class 𝑥
wceq 1331wff 𝐴 = 𝐵
wtru 1332wff
df-tru 1334(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
wfal 1336wff
df-fal 1337(⊥ ↔ ¬ ⊤)
wxo 1353wff (𝜑𝜓)
df-xor 1354((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
ax-5 1423(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-7 1424(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-gen 1425𝜑       𝑥𝜑
wnf 1436wff 𝑥𝜑
df-nf 1437(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
wex 1468wff 𝑥𝜑
ax-ie1 1469(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-ie2 1470(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
wcel 1480wff 𝐴𝐵
ax-8 1482(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
ax-10 1483(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-11 1484(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
ax-i12 1485(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-bndl 1486(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-4 1487(∀𝑥𝜑𝜑)
ax-13 1491(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
ax-14 1492(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
ax-17 1506(𝜑 → ∀𝑥𝜑)
ax-i9 1510𝑥 𝑥 = 𝑦
ax-ial 1514(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
ax-i5r 1515((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))
ax-10o 1694(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
wsb 1735wff [𝑦 / 𝑥]𝜑
df-sb 1736([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
ax-16 1786(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
ax-11o 1795(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
weu 1999wff ∃!𝑥𝜑
wmo 2000wff ∃*𝑥𝜑
df-eu 2002(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
df-mo 2003(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
ax-ext 2121(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
cab 2125class {𝑥𝜑}
df-clab 2126(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
df-cleq 2132(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-clel 2135(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
wnfc 2268wff 𝑥𝐴
df-nfc 2270(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
wne 2308wff 𝐴𝐵
df-ne 2309(𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
wnel 2403wff 𝐴𝐵
df-nel 2404(𝐴𝐵 ↔ ¬ 𝐴𝐵)
wral 2416wff 𝑥𝐴 𝜑
wrex 2417wff 𝑥𝐴 𝜑
wreu 2418wff ∃!𝑥𝐴 𝜑
wrmo 2419wff ∃*𝑥𝐴 𝜑
crab 2420class {𝑥𝐴𝜑}
df-ral 2421(∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
df-rex 2422(∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
df-reu 2423(∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
df-rmo 2424(∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
df-rab 2425{𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
cvv 2686class V
df-v 2688V = {𝑥𝑥 = 𝑥}
wcdeq 2892wff CondEq(𝑥 = 𝑦𝜑)
df-cdeq 2893(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
wsbc 2909wff [𝐴 / 𝑥]𝜑
df-sbc 2910([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
csb 3003class 𝐴 / 𝑥𝐵
df-csb 3004𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
cdif 3068class (𝐴𝐵)
cun 3069class (𝐴𝐵)
cin 3070class (𝐴𝐵)
wss 3071wff 𝐴𝐵
df-dif 3073(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
df-un 3075(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-in 3077(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-ss 3084(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
c0 3363class
df-nul 3364∅ = (V ∖ V)
cif 3474class if(𝜑, 𝐴, 𝐵)
df-if 3475if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
cpw 3510class 𝒫 𝐴
df-pw 3512𝒫 𝐴 = {𝑥𝑥𝐴}
csn 3527class {𝐴}
cpr 3528class {𝐴, 𝐵}
ctp 3529class {𝐴, 𝐵, 𝐶}
cop 3530class 𝐴, 𝐵
cotp 3531class 𝐴, 𝐵, 𝐶
df-sn 3533{𝐴} = {𝑥𝑥 = 𝐴}
df-pr 3534{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
df-tp 3535{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
df-op 3536𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
df-ot 3537𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
cuni 3736class 𝐴
df-uni 3737 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
cint 3771class 𝐴
df-int 3772 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
ciun 3813class 𝑥𝐴 𝐵
ciin 3814class 𝑥𝐴 𝐵
df-iun 3815 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
df-iin 3816 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
wdisj 3906wff Disj 𝑥𝐴 𝐵
df-disj 3907(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
wbr 3929wff 𝐴𝑅𝐵
df-br 3930(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
copab 3988class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
cmpt 3989class (𝑥𝐴𝐵)
df-opab 3990{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
df-mpt 3991(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
wtr 4026wff Tr 𝐴
df-tr 4027(Tr 𝐴 𝐴𝐴)
ax-coll 4043𝑏𝜑       (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
ax-sep 4046𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
ax-nul 4054𝑥𝑦 ¬ 𝑦𝑥
ax-pow 4098𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
wem 4118wff EXMID
df-exmid 4119(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
ax-pr 4131𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
cep 4209class E
cid 4210class I
df-eprel 4211 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
df-id 4215 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
wpo 4216wff 𝑅 Po 𝐴
wor 4217wff 𝑅 Or 𝐴
df-po 4218(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
df-iso 4219(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
wfrfor 4249wff FrFor 𝑅𝐴𝑆
wfr 4250wff 𝑅 Fr 𝐴
wse 4251wff 𝑅 Se 𝐴
wwe 4252wff 𝑅 We 𝐴
df-frfor 4253( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
df-frind 4254(𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
df-se 4255(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
df-wetr 4256(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
word 4284wff Ord 𝐴
con0 4285class On
wlim 4286wff Lim 𝐴
csuc 4287class suc 𝐴
df-iord 4288(Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
df-on 4290On = {𝑥 ∣ Ord 𝑥}
df-ilim 4291(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
df-suc 4293suc 𝐴 = (𝐴 ∪ {𝐴})
ax-un 4355𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
ax-setind 4452(∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-iinf 4502𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
com 4504class ω
df-iom 4505ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
cxp 4537class (𝐴 × 𝐵)
ccnv 4538class 𝐴
cdm 4539class dom 𝐴
crn 4540class ran 𝐴
cres 4541class (𝐴𝐵)
cima 4542class (𝐴𝐵)
ccom 4543class (𝐴𝐵)
wrel 4544wff Rel 𝐴
df-xp 4545(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
df-rel 4546(Rel 𝐴𝐴 ⊆ (V × V))
df-cnv 4547𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
df-co 4548(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
df-dm 4549dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
df-rn 4550ran 𝐴 = dom 𝐴
df-res 4551(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
df-ima 4552(𝐴𝐵) = ran (𝐴𝐵)
cio 5086class (℩𝑥𝜑)
df-iota 5088(℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wfun 5117wff Fun 𝐴
wfn 5118wff 𝐴 Fn 𝐵
wf 5119wff 𝐹:𝐴𝐵
wf1 5120wff 𝐹:𝐴1-1𝐵
wfo 5121wff 𝐹:𝐴onto𝐵
wf1o 5122wff 𝐹:𝐴1-1-onto𝐵
cfv 5123class (𝐹𝐴)
wiso 5124wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
df-fun 5125(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
df-fn 5126(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
df-f 5127(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
df-f1 5128(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
df-fo 5129(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
df-f1o 5130(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
df-fv 5131(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
df-isom 5132(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
crio 5729class (𝑥𝐴 𝜑)
df-riota 5730(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
co 5774class (𝐴𝐹𝐵)
coprab 5775class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
cmpo 5776class (𝑥𝐴, 𝑦𝐵𝐶)
df-ov 5777(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
df-oprab 5778{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
df-mpo 5779(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
cof 5980class 𝑓 𝑅
cofr 5981class 𝑟 𝑅
df-of 5982𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
df-ofr 5983𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
c1st 6036class 1st
c2nd 6037class 2nd
df-1st 60381st = (𝑥 ∈ V ↦ dom {𝑥})
df-2nd 60392nd = (𝑥 ∈ V ↦ ran {𝑥})
ctpos 6141class tpos 𝐹
df-tpos 6142tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
wsmo 6182wff Smo 𝐴
df-smo 6183(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
crecs 6201class recs(𝐹)
df-recs 6202recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
crdg 6266class rec(𝐹, 𝐼)
df-irdg 6267rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
cfrec 6287class frec(𝐹, 𝐼)
df-frec 6288frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
c1o 6306class 1o
c2o 6307class 2o
c3o 6308class 3o
c4o 6309class 4o
coa 6310class +o
comu 6311class ·o
coei 6312class o
df-1o 63131o = suc ∅
df-2o 63142o = suc 1o
df-3o 63153o = suc 2o
df-4o 63164o = suc 3o
df-oadd 6317 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
df-omul 6318 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
df-oexpi 6319o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
wer 6426wff 𝑅 Er 𝐴
cec 6427class [𝐴]𝑅
cqs 6428class (𝐴 / 𝑅)
df-er 6429(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
df-ec 6431[𝐴]𝑅 = (𝑅 “ {𝐴})
df-qs 6435(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
cmap 6542class 𝑚
cpm 6543class pm
df-map 6544𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
df-pm 6545pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
cixp 6592class X𝑥𝐴 𝐵
df-ixp 6593X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
cen 6632class
cdom 6633class
cfn 6634class Fin
df-en 6635 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
df-dom 6636 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
df-fin 6637Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
cfi 6856class fi
df-fi 6857fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
csup 6869class sup(𝐴, 𝐵, 𝑅)
cinf 6870class inf(𝐴, 𝐵, 𝑅)
df-sup 6871sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
df-inf 6872inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
cdju 6922class (𝐴𝐵)
df-dju 6923(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
cinl 6930class inl
cinr 6931class inr
df-inl 6932inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
df-inr 6933inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
cdjucase 6968class case(𝑅, 𝑆)
df-case 6969case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
cdjud 6987class (𝑅d 𝑆)
df-djud 6988(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
comni 7004class Omni
xnninf 7005class
df-omni 7006Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
df-nninf 7007 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
cmarkov 7025class Markov
df-markov 7026Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
ccrd 7035class card
df-card 7036card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
wac 7061wff CHOICE
df-ac 7062(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
wacc 7077wff CCHOICE
df-cc 7078(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
cnpi 7080class N
cpli 7081class +N
cmi 7082class ·N
clti 7083class <N
cplpq 7084class +pQ
cmpq 7085class ·pQ
cltpq 7086class <pQ
ceq 7087class ~Q
cnq 7088class Q
c1q 7089class 1Q
cplq 7090class +Q
cmq 7091class ·Q
crq 7092class *Q
cltq 7093class <Q
ceq0 7094class ~Q0
cnq0 7095class Q0
c0q0 7096class 0Q0
cplq0 7097class +Q0
cmq0 7098class ·Q0
cnp 7099class P
c1p 7100class 1P
cpp 7101class +P
cmp 7102class ·P
cltp 7103class <P
cer 7104class ~R
cnr 7105class R
c0r 7106class 0R
c1r 7107class 1R
cm1r 7108class -1R
cplr 7109class +R
cmr 7110class ·R
cltr 7111class <R
df-ni 7112N = (ω ∖ {∅})
df-pli 7113 +N = ( +o ↾ (N × N))
df-mi 7114 ·N = ( ·o ↾ (N × N))
df-lti 7115 <N = ( E ∩ (N × N))
df-plpq 7152 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-mpq 7153 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-ltpq 7154 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
df-enq 7155 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
df-nqqs 7156Q = ((N × N) / ~Q )
df-plqqs 7157 +Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ +pQ𝑢, 𝑓⟩)] ~Q ))}
df-mqqs 7158 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q𝑦 = [⟨𝑢, 𝑓⟩] ~Q ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ ·pQ𝑢, 𝑓⟩)] ~Q ))}
df-1nqqs 71591Q = [⟨1o, 1o⟩] ~Q
df-rq 7160*Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
df-ltnqqs 7161 <Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~Q𝑦 = [⟨𝑣, 𝑢⟩] ~Q ) ∧ (𝑧 ·N 𝑢) <N (𝑤 ·N 𝑣)))}
df-enq0 7232 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
df-nq0 7233Q0 = ((ω × N) / ~Q0 )
df-0nq0 72340Q0 = [⟨∅, 1o⟩] ~Q0
df-plq0 7235 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-mq0 7236 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)⟩] ~Q0 ))}
df-inp 7274P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
df-i1p 72751P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
df-iplp 7276 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
df-imp 7277 ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
df-iltp 7278<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
df-enr 7534 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
df-nr 7535R = ((P × P) / ~R )
df-plr 7536 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 7537 ·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
df-ltr 7538 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
df-0r 75390R = [⟨1P, 1P⟩] ~R
df-1r 75401R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 7541-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 7618class
cr 7619class
cc0 7620class 0
c1 7621class 1
ci 7622class i
caddc 7623class +
cltrr 7624class <
cmul 7625class ·
df-c 7626ℂ = (R × R)
df-0 76270 = ⟨0R, 0R
df-1 76281 = ⟨1R, 0R
df-i 7629i = ⟨0R, 1R
df-r 7630ℝ = (R × {0R})
df-add 7631 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
df-mul 7632 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
df-lt 7633 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
ax-cnex 7711ℂ ∈ V
ax-resscn 7712ℝ ⊆ ℂ
ax-1cn 77131 ∈ ℂ
ax-1re 77141 ∈ ℝ
ax-icn 7715i ∈ ℂ
ax-addcl 7716((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
ax-addrcl 7717((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
ax-mulcl 7718((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
ax-mulrcl 7719((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
ax-addcom 7720((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
ax-mulcom 7721((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
ax-addass 7722((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-mulass 7723((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-distr 7724((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-i2m1 7725((i · i) + 1) = 0
ax-0lt1 77260 < 1
ax-1rid 7727(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
ax-0id 7728(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
ax-rnegex 7729(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
ax-precex 7730((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
ax-cnre 7731(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
ax-pre-ltirr 7732(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
ax-pre-ltwlin 7733((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
ax-pre-lttrn 7734((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
ax-pre-apti 7735((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
ax-pre-ltadd 7736((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
ax-pre-mulgt0 7737((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
ax-pre-mulext 7738((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
ax-arch 7739(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
ax-caucvg 7740𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
ax-pre-suploc 7741(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
ax-addf 7742 + :(ℂ × ℂ)⟶ℂ
ax-mulf 7743 · :(ℂ × ℂ)⟶ℂ
cpnf 7797class +∞
cmnf 7798class -∞
cxr 7799class *
clt 7800class <
cle 7801class
df-pnf 7802+∞ = 𝒫
df-mnf 7803-∞ = 𝒫 +∞
df-xr 7804* = (ℝ ∪ {+∞, -∞})
df-ltxr 7805 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
df-le 7806 ≤ = ((ℝ* × ℝ*) ∖ < )
cmin 7933class
cneg 7934class -𝐴
df-sub 7935 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
df-neg 7936-𝐴 = (0 − 𝐴)
creap 8336class #
df-reap 8337 # = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
cap 8343class #
df-ap 8344 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
cdiv 8432class /
df-div 8433 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
cn 8720class
df-inn 8721ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
c2 8771class 2
c3 8772class 3
c4 8773class 4
c5 8774class 5
c6 8775class 6
c7 8776class 7
c8 8777class 8
c9 8778class 9
df-2 87792 = (1 + 1)
df-3 87803 = (2 + 1)
df-4 87814 = (3 + 1)
df-5 87825 = (4 + 1)
df-6 87836 = (5 + 1)
df-7 87847 = (6 + 1)
df-8 87858 = (7 + 1)
df-9 87869 = (8 + 1)
cn0 8977class 0
df-n0 89780 = (ℕ ∪ {0})
cxnn0 9040class 0*
df-xnn0 90410* = (ℕ0 ∪ {+∞})
cz 9054class
df-z 9055ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
cdc 9182class 𝐴𝐵
df-dec 9183𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
cuz 9326class
df-uz 9327 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
cq 9411class
df-q 9412ℚ = ( / “ (ℤ × ℕ))
crp 9441class +
df-rp 9442+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
cxne 9556class -𝑒𝐴
cxad 9557class +𝑒
cxmu 9558class ·e
df-xneg 9559-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 9560 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
df-xmul 9561 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
cioo 9671class (,)
cioc 9672class (,]
cico 9673class [,)
cicc 9674class [,]
df-ioo 9675(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
df-ioc 9676(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
df-ico 9677[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
df-icc 9678[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
cfz 9790class ...
df-fz 9791... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
cfzo 9919class ..^
df-fzo 9920..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
cfl 10041class
cceil 10042class
df-fl 10043⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
df-ceil 10044⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
cmo 10095class mod
df-mod 10096 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
cseq 10218class seq𝑀( + , 𝐹)
df-seqfrec 10219seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
cexp 10292class
df-exp 10293↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
cfa 10471class !
df-fac 10472! = ({⟨0, 1⟩} ∪ seq1( · , I ))
cbc 10493class C
df-bc 10494C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
chash 10521class
df-ihash 10522♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
cshi 10586class shift
df-shft 10587 shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
ccj 10611class
cre 10612class
cim 10613class
df-cj 10614∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
df-re 10615ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
df-im 10616ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
csqrt 10768class
cabs 10769class abs
df-rsqrt 10770√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
df-abs 10771abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
cli 11047class
df-clim 11048 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
csu 11122class Σ𝑘𝐴 𝐵
df-sumdc 11123Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
cprod 11319class 𝑘𝐴 𝐵
df-proddc 11320𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
ce 11348class exp
ceu 11349class e
csin 11350class sin
ccos 11351class cos
ctan 11352class tan
cpi 11353class π
df-ef 11354exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
df-e 11355e = (exp‘1)
df-sin 11356sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
df-cos 11357cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
df-tan 11358tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
df-pi 11359π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
ctau 11481class τ
df-tau 11482τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
cdvds 11493class
df-dvds 11494 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
cgcd 11635class gcd
df-gcd 11636 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
clcm 11741class lcm
df-lcm 11742 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
cprime 11788class
df-prm 11789ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
cnumer 11859class numer
cdenom 11860class denom
df-numer 11861numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
df-denom 11862denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
cphi 11886class ϕ
df-phi 11887ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
cstr 11955class Struct
cnx 11956class ndx
csts 11957class sSet
cslot 11958class Slot 𝐴
cbs 11959class Base
cress 11960class s
df-struct 11961 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
df-ndx 11962ndx = ( I ↾ ℕ)
df-slot 11963Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
df-base 11965Base = Slot 1
df-sets 11966 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
df-ress 11967s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
cplusg 12021class +g
cmulr 12022class .r
cstv 12023class *𝑟
csca 12024class Scalar
cvsca 12025class ·𝑠
cip 12026class ·𝑖
cts 12027class TopSet
cple 12028class le
coc 12029class oc
cds 12030class dist
cunif 12031class UnifSet
chom 12032class Hom
cco 12033class comp
df-plusg 12034+g = Slot 2
df-mulr 12035.r = Slot 3
df-starv 12036*𝑟 = Slot 4
df-sca 12037Scalar = Slot 5
df-vsca 12038 ·𝑠 = Slot 6
df-ip 12039·𝑖 = Slot 8
df-tset 12040TopSet = Slot 9
df-ple 12041le = Slot 10
df-ocomp 12042oc = Slot 11
df-ds 12043dist = Slot 12
df-unif 12044UnifSet = Slot 13
df-hom 12045Hom = Slot 14
df-cco 12046comp = Slot 15
crest 12120class t
ctopn 12121class TopOpen
df-rest 12122t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
df-topn 12123TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
ctg 12135class topGen
cpt 12136class t
c0g 12137class 0g
cgsu 12138class Σg
df-0g 121390g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
df-gsum 12140 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
df-topgen 12141topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
df-pt 12142t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
cprds 12143class Xs
cpws 12144class s
df-prds 12145Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
df-pws 12147s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
cpsmet 12148class PsMet
cxmet 12149class ∞Met
cmet 12150class Met
cbl 12151class ball
cfbas 12152class fBas
cfg 12153class filGen
cmopn 12154class MetOpen
cmetu 12155class metUnif
df-psmet 12156PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-xmet 12157∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-met 12158Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
df-bl 12159ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
df-mopn 12160MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
df-fbas 12161fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
df-fg 12162filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
df-metu 12163metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
ctop 12164class Top
df-top 12165Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
ctopon 12177class TopOn
df-topon 12178TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
ctps 12197class TopSp
df-topsp 12198TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
ctb 12209class TopBases
df-bases 12210TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
ccld 12261class Clsd
cnt 12262class int
ccl 12263class cls
df-cld 12264Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
df-ntr 12265int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
df-cls 12266cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
cnei 12307class nei
df-nei 12308nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
ccn 12354class Cn
ccnp 12355class CnP
clm 12356class 𝑡
df-cn 12357 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
df-cnp 12358 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
df-lm 12359𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
ctx 12421class ×t
df-tx 12422 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
chmeo 12469class Homeo
df-hmeo 12470Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
cxms 12505class ∞MetSp
cms 12506class MetSp
ctms 12507class toMetSp
df-xms 12508∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
df-ms 12509MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
df-tms 12510toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
ccncf 12726class cn
df-cncf 12727cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
climc 12792class lim
cdv 12793class D
df-limced 12794 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
df-dvap 12795 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
The list of syntax, axioms (ax-) and definitions (df-) for the starts here
wdcin 13000wff 𝐴 DECIDin 𝐵
df-dcin 13001(𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
wbd 13010wff BOUNDED 𝜑
ax-bd0 13011(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
ax-bdim 13012BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdan 13013BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdor 13014BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
ax-bdn 13015BOUNDED 𝜑       BOUNDED ¬ 𝜑
ax-bdal 13016BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdex 13017BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
ax-bdeq 13018BOUNDED 𝑥 = 𝑦
ax-bdel 13019BOUNDED 𝑥𝑦
ax-bdsb 13020BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
wbdc 13038wff BOUNDED 𝐴
df-bdc 13039(BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
ax-bdsep 13082BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
ax-bj-d0cl 13122BOUNDED 𝜑       DECID 𝜑
wind 13124wff Ind 𝐴
df-bj-ind 13125(Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
ax-infvn 13139𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))
ax-bdsetind 13166BOUNDED 𝜑       (∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
ax-inf2 13174𝑎𝑥(𝑥𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦𝑎 𝑥 = suc 𝑦))
ax-strcoll 13180𝑎(∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑))
ax-sscoll 13185𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐𝑦(𝑦𝑑 ↔ ∃𝑥𝑎 𝜑))
ax-ddkcomp 13187(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 𝑦𝑥 ∧ ((𝐵𝑅 ∧ ∀𝑦𝐴 𝑦𝐵) → 𝑥𝐵)))
walsi 13242wff ∀!𝑥(𝜑𝜓)
walsc 13243wff ∀!𝑥𝐴𝜑
df-alsi 13244(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
df-alsc 13245(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
  Copyright terms: Public domain W3C validator