| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem4 | GIF version | ||
| Description: Lemma 4 for 2lgs 15748: special case of 2lgs 15748 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgs2 15746 | . . 3 ⊢ (2 /L 2) = 0 | |
| 2 | 1 | eqeq1i 2217 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
| 3 | 0ne1 9145 | . . . 4 ⊢ 0 ≠ 1 | |
| 4 | 3 | neii 2382 | . . 3 ⊢ ¬ 0 = 1 |
| 5 | 1ne2 9285 | . . . . 5 ⊢ 1 ≠ 2 | |
| 6 | 5 | nesymi 2426 | . . . 4 ⊢ ¬ 2 = 1 |
| 7 | 2re 9148 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt7 9267 | . . . . . 6 ⊢ 2 < 7 | |
| 9 | 7, 8 | ltneii 8211 | . . . . 5 ⊢ 2 ≠ 7 |
| 10 | 9 | neii 2382 | . . . 4 ⊢ ¬ 2 = 7 |
| 11 | 6, 10 | pm3.2ni 817 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
| 12 | 4, 11 | 2false 705 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
| 13 | 2nn 9240 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 14 | nnq 9796 | . . . . . 6 ⊢ (2 ∈ ℕ → 2 ∈ ℚ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ ℚ |
| 16 | 8nn 9246 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 17 | nnq 9796 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℚ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℚ |
| 19 | 0le2 9168 | . . . . 5 ⊢ 0 ≤ 2 | |
| 20 | 2lt8 9274 | . . . . 5 ⊢ 2 < 8 | |
| 21 | modqid 10538 | . . . . 5 ⊢ (((2 ∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
| 22 | 15, 18, 19, 20, 21 | mp4an 427 | . . . 4 ⊢ (2 mod 8) = 2 |
| 23 | 22 | eleq1i 2275 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
| 24 | 2ex 9150 | . . . 4 ⊢ 2 ∈ V | |
| 25 | 24 | elpr 3667 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
| 26 | 23, 25 | bitr2i 185 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
| 27 | 2, 12, 26 | 3bitri 206 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cpr 3647 class class class wbr 4062 (class class class)co 5974 0cc0 7967 1c1 7968 < clt 8149 ≤ cle 8150 ℕcn 9078 2c2 9129 7c7 9134 8c8 9135 ℚcq 9782 mod cmo 10511 /L clgs 15641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-xor 1398 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-2o 6533 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-proddc 12028 df-dvds 12265 df-gcd 12441 df-prm 12596 df-phi 12699 df-pc 12774 df-lgs 15642 |
| This theorem is referenced by: 2lgs 15748 |
| Copyright terms: Public domain | W3C validator |