Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcn2 Structured version   Visualization version   GIF version

Theorem knoppcn2 34725
Description: Variant of knoppcn 34693 with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
knoppcn2.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcn2.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcn2.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppcn2.n (𝜑𝑁 ∈ ℕ)
knoppcn2.c (𝜑𝐶 ∈ (-1(,)1))
Assertion
Ref Expression
knoppcn2 (𝜑𝑊 ∈ (ℝ–cn→ℝ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppcn2
StepHypRef Expression
1 knoppcn2.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcn2.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcn2.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 knoppcn2.c . . 3 (𝜑𝐶 ∈ (-1(,)1))
5 knoppcn2.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppf 34724 . 2 (𝜑𝑊:ℝ⟶ℝ)
7 ax-resscn 10939 . . . . 5 ℝ ⊆ ℂ
87a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
94knoppndvlem3 34703 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 495 . . . . 5 (𝜑𝐶 ∈ ℝ)
119simprd 496 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
121, 2, 3, 5, 10, 11knoppcn 34693 . . . 4 (𝜑𝑊 ∈ (ℝ–cn→ℂ))
138, 12jca 512 . . 3 (𝜑 → (ℝ ⊆ ℂ ∧ 𝑊 ∈ (ℝ–cn→ℂ)))
14 cncffvrn 24072 . . 3 ((ℝ ⊆ ℂ ∧ 𝑊 ∈ (ℝ–cn→ℂ)) → (𝑊 ∈ (ℝ–cn→ℝ) ↔ 𝑊:ℝ⟶ℝ))
1513, 14syl 17 . 2 (𝜑 → (𝑊 ∈ (ℝ–cn→ℝ) ↔ 𝑊:ℝ⟶ℝ))
166, 15mpbird 256 1 (𝜑𝑊 ∈ (ℝ–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wss 3892   class class class wbr 5079  cmpt 5162  wf 6428  cfv 6432  (class class class)co 7272  cc 10880  cr 10881  1c1 10883   + caddc 10885   · cmul 10887   < clt 11020  cmin 11216  -cneg 11217   / cdiv 11643  cn 11984  2c2 12039  0cn0 12244  (,)cioo 13090  cfl 13521  cexp 13793  abscabs 14956  Σcsu 15408  cnccncf 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-limsup 15191  df-clim 15208  df-rlim 15209  df-sum 15409  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-pt 17166  df-prds 17169  df-xrs 17224  df-qtop 17229  df-imas 17230  df-xps 17232  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-mulg 18712  df-cntz 18934  df-cmn 19399  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cn 22389  df-cnp 22390  df-tx 22724  df-hmeo 22917  df-xms 23484  df-ms 23485  df-tms 23486  df-cncf 24052  df-ulm 25547
This theorem is referenced by:  cnndvlem1  34726
  Copyright terms: Public domain W3C validator