![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncffvrn | Structured version Visualization version GIF version |
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
cncffvrn | ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfi 23185 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) | |
2 | 1 | 3expb 1113 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
3 | 2 | ralrimivva 3158 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
4 | 3 | adantl 482 | . 2 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
5 | cncfrss 23182 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
6 | simpl 483 | . . 3 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ ℂ) | |
7 | elcncf2 23181 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) | |
8 | 5, 6, 7 | syl2an2 682 | . 2 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
9 | 4, 8 | mpbiran2d 704 | 1 ⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ∀wral 3105 ∃wrex 3106 ⊆ wss 3859 class class class wbr 4962 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ℂcc 10381 < clt 10521 − cmin 10717 ℝ+crp 12239 abscabs 14427 –cn→ccncf 23167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-2 11548 df-cj 14292 df-re 14293 df-im 14294 df-abs 14429 df-cncf 23169 |
This theorem is referenced by: cncfss 23190 cncfmpt2ss 23206 rolle 24270 dvlipcn 24274 c1lip2 24278 dvivthlem1 24288 dvivth 24290 lhop1lem 24293 dvcnvrelem2 24298 dvfsumlem2 24307 itgsubstlem 24328 efcvx 24720 dvrelog 24901 relogcn 24902 logcn 24911 dvlog 24915 logccv 24927 resqrtcn 25011 loglesqrt 25020 lgamgulmlem2 25289 rpsqrtcn 31481 fdvneggt 31488 fdvnegge 31490 logdivsqrle 31538 knoppcn2 33484 areacirclem4 34516 cncfres 34575 cncfmptssg 41694 resincncf 41699 cncfcompt 41707 cncfiooiccre 41719 dvdivcncf 41753 dvbdfbdioolem1 41754 ioodvbdlimc1lem2 41758 ioodvbdlimc2lem 41760 itgsbtaddcnst 41808 fourierdlem58 41991 fourierdlem59 41992 fourierdlem62 41995 fourierdlem68 42001 fourierdlem76 42009 fourierdlem78 42011 fourierdlem83 42016 fourierdlem101 42034 fourierdlem112 42045 fouriercn 42059 |
Copyright terms: Public domain | W3C validator |