![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmate | Structured version Visualization version GIF version |
Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmate.p | ⊢ 𝑃 = (Poly1‘𝑅) |
decpmate.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
decpmate.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
decpmate | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑀 decompPMat 𝐾)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmate.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
2 | decpmate.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | decpmatval 22695 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
4 | 3 | 3adant1 1127 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
5 | 4 | adantr 479 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
6 | oveq12 7435 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
7 | 6 | fveq2d 6906 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝐼𝑀𝐽))) |
8 | 7 | fveq1d 6904 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝐼𝑀𝐽))‘𝐾)) |
9 | 8 | adantl 480 | . 2 ⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝐼𝑀𝐽))‘𝐾)) |
10 | simprl 769 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
11 | simprr 771 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
12 | fvexd 6917 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((coe1‘(𝐼𝑀𝐽))‘𝐾) ∈ V) | |
13 | 5, 9, 10, 11, 12 | ovmpod 7580 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑀 decompPMat 𝐾)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ℕ0cn0 12512 Basecbs 17189 Poly1cpl1 22114 coe1cco1 22115 Mat cmat 22335 decompPMat cdecpmat 22692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-hom 17266 df-cco 17267 df-0g 17432 df-prds 17438 df-pws 17440 df-sra 21072 df-rgmod 21073 df-dsmm 21680 df-frlm 21695 df-mat 22336 df-decpmat 22693 |
This theorem is referenced by: decpmataa0 22698 decpmatmullem 22701 decpmatmul 22702 pmatcollpw1lem1 22704 pmatcollpw1lem2 22705 pmatcollpw2lem 22707 pmatcollpwscmatlem2 22720 |
Copyright terms: Public domain | W3C validator |