MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmate Structured version   Visualization version   GIF version

Theorem decpmate 22720
Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmate (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑀 decompPMat 𝐾)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝐾))

Proof of Theorem decpmate
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . . 5 𝐵 = (Base‘𝐶)
31, 2decpmatval 22719 . . . 4 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
433adant1 1130 . . 3 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
54adantr 480 . 2 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
6 oveq12 7422 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
76fveq2d 6890 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝐼𝑀𝐽)))
87fveq1d 6888 . . 3 ((𝑖 = 𝐼𝑗 = 𝐽) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝐼𝑀𝐽))‘𝐾))
98adantl 481 . 2 ((((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝐼𝑀𝐽))‘𝐾))
10 simprl 770 . 2 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
11 simprr 772 . 2 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
12 fvexd 6901 . 2 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → ((coe1‘(𝐼𝑀𝐽))‘𝐾) ∈ V)
135, 9, 10, 11, 12ovmpod 7567 1 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑀 decompPMat 𝐾)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3463  cfv 6541  (class class class)co 7413  cmpo 7415  0cn0 12509  Basecbs 17229  Poly1cpl1 22126  coe1cco1 22127   Mat cmat 22359   decompPMat cdecpmat 22716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-pws 17465  df-sra 21140  df-rgmod 21141  df-dsmm 21706  df-frlm 21721  df-mat 22360  df-decpmat 22717
This theorem is referenced by:  decpmataa0  22722  decpmatmullem  22725  decpmatmul  22726  pmatcollpw1lem1  22728  pmatcollpw1lem2  22729  pmatcollpw2lem  22731  pmatcollpwscmatlem2  22744
  Copyright terms: Public domain W3C validator