| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decpmatcl | Structured version Visualization version GIF version | ||
| Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
| Ref | Expression |
|---|---|
| decpmate.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| decpmate.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| decpmate.b | ⊢ 𝐵 = (Base‘𝐶) |
| decpmatcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| decpmatcl.d | ⊢ 𝐷 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| decpmatcl | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decpmate.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 2 | decpmate.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | decpmatval 22683 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 4 | 3 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 5 | decpmatcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 6 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | decpmatcl.d | . . 3 ⊢ 𝐷 = (Base‘𝐴) | |
| 8 | 1, 2 | matrcl 22330 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 11 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ 𝑉) | |
| 12 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 13 | simp2 1137 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 14 | simp3 1138 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 15 | simp2 1137 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ 𝐵) | |
| 16 | 15 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
| 17 | 1, 12, 2, 13, 14, 16 | matecld 22344 | . . . 4 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃)) |
| 18 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 19 | 18 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐾 ∈ ℕ0) |
| 20 | eqid 2733 | . . . . 5 ⊢ (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) | |
| 21 | decpmate.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 22 | 20, 12, 21, 6 | coe1fvalcl 22128 | . . . 4 ⊢ (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅)) |
| 23 | 17, 19, 22 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅)) |
| 24 | 5, 6, 7, 10, 11, 23 | matbas2d 22341 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ 𝐷) |
| 25 | 4, 24 | eqeltrd 2833 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 Fincfn 8877 ℕ0cn0 12390 Basecbs 17124 Poly1cpl1 22092 coe1cco1 22093 Mat cmat 22325 decompPMat cdecpmat 22680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-prds 17355 df-pws 17357 df-sra 21111 df-rgmod 21112 df-dsmm 21673 df-frlm 21688 df-psr 21850 df-opsr 21854 df-psr1 22095 df-ply1 22097 df-coe1 22098 df-mat 22326 df-decpmat 22681 |
| This theorem is referenced by: decpmataa0 22686 decpmatmul 22690 pmatcollpw1 22694 pmatcollpw2 22696 pmatcollpwlem 22698 pmatcollpw 22699 pmatcollpwfi 22700 pmatcollpwscmatlem2 22708 pm2mpf1lem 22712 pm2mpcl 22715 pm2mpcoe1 22718 mp2pm2mplem5 22728 mp2pm2mp 22729 pm2mpghmlem2 22730 pm2mpghmlem1 22731 pm2mpghm 22734 pm2mpmhmlem2 22737 |
| Copyright terms: Public domain | W3C validator |