MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatcl Structured version   Visualization version   GIF version

Theorem decpmatcl 22590
Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatcl.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
decpmatcl ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷)

Proof of Theorem decpmatcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . 4 𝐵 = (Base‘𝐶)
31, 2decpmatval 22588 . . 3 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
433adant1 1127 . 2 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
5 decpmatcl.a . . 3 𝐴 = (𝑁 Mat 𝑅)
6 eqid 2724 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 decpmatcl.d . . 3 𝐷 = (Base‘𝐴)
81, 2matrcl 22233 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
98simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant2 1131 . . 3 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
11 simp1 1133 . . 3 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑅𝑉)
12 eqid 2724 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
13 simp2 1134 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
14 simp3 1135 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
15 simp2 1134 . . . . . 6 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑀𝐵)
16153ad2ant1 1130 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
171, 12, 2, 13, 14, 16matecld 22249 . . . 4 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
18 simp3 1135 . . . . 5 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
19183ad2ant1 1130 . . . 4 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
20 eqid 2724 . . . . 5 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
21 decpmate.p . . . . 5 𝑃 = (Poly1𝑅)
2220, 12, 21, 6coe1fvalcl 22053 . . . 4 (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅))
2317, 19, 22syl2anc 583 . . 3 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅))
245, 6, 7, 10, 11, 23matbas2d 22246 . 2 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ 𝐷)
254, 24eqeltrd 2825 1 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3466  cfv 6533  (class class class)co 7401  cmpo 7403  Fincfn 8934  0cn0 12468  Basecbs 17142  Poly1cpl1 22018  coe1cco1 22019   Mat cmat 22228   decompPMat cdecpmat 22585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-ot 4629  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-sup 9432  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-hom 17219  df-cco 17220  df-0g 17385  df-prds 17391  df-pws 17393  df-sra 21010  df-rgmod 21011  df-dsmm 21594  df-frlm 21609  df-psr 21770  df-opsr 21774  df-psr1 22021  df-ply1 22023  df-coe1 22024  df-mat 22229  df-decpmat 22586
This theorem is referenced by:  decpmataa0  22591  decpmatmul  22595  pmatcollpw1  22599  pmatcollpw2  22601  pmatcollpwlem  22603  pmatcollpw  22604  pmatcollpwfi  22605  pmatcollpwscmatlem2  22613  pm2mpf1lem  22617  pm2mpcl  22620  pm2mpcoe1  22623  mp2pm2mplem5  22633  mp2pm2mp  22634  pm2mpghmlem2  22635  pm2mpghmlem1  22636  pm2mpghm  22639  pm2mpmhmlem2  22642
  Copyright terms: Public domain W3C validator