MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatcl Structured version   Visualization version   GIF version

Theorem decpmatcl 22683
Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatcl.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
decpmatcl ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷)

Proof of Theorem decpmatcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . 4 𝐵 = (Base‘𝐶)
31, 2decpmatval 22681 . . 3 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
433adant1 1130 . 2 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
5 decpmatcl.a . . 3 𝐴 = (𝑁 Mat 𝑅)
6 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 decpmatcl.d . . 3 𝐷 = (Base‘𝐴)
81, 2matrcl 22328 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
98simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant2 1134 . . 3 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
11 simp1 1136 . . 3 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑅𝑉)
12 eqid 2731 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
13 simp2 1137 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
14 simp3 1138 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
15 simp2 1137 . . . . . 6 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝑀𝐵)
16153ad2ant1 1133 . . . . 5 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
171, 12, 2, 13, 14, 16matecld 22342 . . . 4 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
18 simp3 1138 . . . . 5 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
19183ad2ant1 1133 . . . 4 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
20 eqid 2731 . . . . 5 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
21 decpmate.p . . . . 5 𝑃 = (Poly1𝑅)
2220, 12, 21, 6coe1fvalcl 22126 . . . 4 (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅))
2317, 19, 22syl2anc 584 . . 3 (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅))
245, 6, 7, 10, 11, 23matbas2d 22339 . 2 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ 𝐷)
254, 24eqeltrd 2831 1 ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  0cn0 12381  Basecbs 17120  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323   decompPMat cdecpmat 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-psr 21847  df-opsr 21851  df-psr1 22093  df-ply1 22095  df-coe1 22096  df-mat 22324  df-decpmat 22679
This theorem is referenced by:  decpmataa0  22684  decpmatmul  22688  pmatcollpw1  22692  pmatcollpw2  22694  pmatcollpwlem  22696  pmatcollpw  22697  pmatcollpwfi  22698  pmatcollpwscmatlem2  22706  pm2mpf1lem  22710  pm2mpcl  22713  pm2mpcoe1  22716  mp2pm2mplem5  22726  mp2pm2mp  22727  pm2mpghmlem2  22728  pm2mpghmlem1  22729  pm2mpghm  22732  pm2mpmhmlem2  22735
  Copyright terms: Public domain W3C validator