| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decpmatcl | Structured version Visualization version GIF version | ||
| Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
| Ref | Expression |
|---|---|
| decpmate.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| decpmate.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| decpmate.b | ⊢ 𝐵 = (Base‘𝐶) |
| decpmatcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| decpmatcl.d | ⊢ 𝐷 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| decpmatcl | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decpmate.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 2 | decpmate.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | decpmatval 22681 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 4 | 3 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 5 | decpmatcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 6 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | decpmatcl.d | . . 3 ⊢ 𝐷 = (Base‘𝐴) | |
| 8 | 1, 2 | matrcl 22328 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 10 | 9 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 11 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ 𝑉) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 13 | simp2 1137 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 14 | simp3 1138 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 15 | simp2 1137 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ 𝐵) | |
| 16 | 15 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
| 17 | 1, 12, 2, 13, 14, 16 | matecld 22342 | . . . 4 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃)) |
| 18 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 19 | 18 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐾 ∈ ℕ0) |
| 20 | eqid 2731 | . . . . 5 ⊢ (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) | |
| 21 | decpmate.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 22 | 20, 12, 21, 6 | coe1fvalcl 22126 | . . . 4 ⊢ (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅)) |
| 23 | 17, 19, 22 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) ∈ (Base‘𝑅)) |
| 24 | 5, 6, 7, 10, 11, 23 | matbas2d 22339 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ 𝐷) |
| 25 | 4, 24 | eqeltrd 2831 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Fincfn 8869 ℕ0cn0 12381 Basecbs 17120 Poly1cpl1 22090 coe1cco1 22091 Mat cmat 22323 decompPMat cdecpmat 22678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-sra 21108 df-rgmod 21109 df-dsmm 21670 df-frlm 21685 df-psr 21847 df-opsr 21851 df-psr1 22093 df-ply1 22095 df-coe1 22096 df-mat 22324 df-decpmat 22679 |
| This theorem is referenced by: decpmataa0 22684 decpmatmul 22688 pmatcollpw1 22692 pmatcollpw2 22694 pmatcollpwlem 22696 pmatcollpw 22697 pmatcollpwfi 22698 pmatcollpwscmatlem2 22706 pm2mpf1lem 22710 pm2mpcl 22713 pm2mpcoe1 22716 mp2pm2mplem5 22726 mp2pm2mp 22727 pm2mpghmlem2 22728 pm2mpghmlem1 22729 pm2mpghm 22732 pm2mpmhmlem2 22735 |
| Copyright terms: Public domain | W3C validator |