Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Visualization version   GIF version

Theorem lcfl6lem 41475
Description: Lemma for lcfl6 41477. A functional 𝐺 (whose kernel is closed by dochsnkr 41449) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h 𝐻 = (LHyp‘𝐾)
lcfl6lem.o = ((ocH‘𝐾)‘𝑊)
lcfl6lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6lem.v 𝑉 = (Base‘𝑈)
lcfl6lem.a + = (+g𝑈)
lcfl6lem.t · = ( ·𝑠𝑈)
lcfl6lem.s 𝑆 = (Scalar‘𝑈)
lcfl6lem.i 1 = (1r𝑆)
lcfl6lem.r 𝑅 = (Base‘𝑆)
lcfl6lem.z 0 = (0g𝑈)
lcfl6lem.f 𝐹 = (LFnl‘𝑈)
lcfl6lem.l 𝐿 = (LKer‘𝑈)
lcfl6lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6lem.g (𝜑𝐺𝐹)
lcfl6lem.x (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
lcfl6lem.y (𝜑 → (𝐺𝑋) = 1 )
Assertion
Ref Expression
lcfl6lem (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   1 ,𝑘,𝑤   ,𝑘,𝑣,𝑤   𝑅,𝑘,𝑣   𝑆,𝑘   · ,𝑘,𝑣,𝑤   𝑣,𝑉   𝑘,𝑋,𝑣,𝑤   𝑤, 0
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑤,𝑣)   𝑈(𝑤,𝑣,𝑘)   1 (𝑣)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2 𝑉 = (Base‘𝑈)
2 lcfl6lem.s . 2 𝑆 = (Scalar‘𝑈)
3 lcfl6lem.r . 2 𝑅 = (Base‘𝑆)
4 eqid 2734 . 2 (0g𝑆) = (0g𝑆)
5 lcfl6lem.f . 2 𝐹 = (LFnl‘𝑈)
6 lcfl6lem.l . 2 𝐿 = (LKer‘𝑈)
7 lcfl6lem.h . . 3 𝐻 = (LHyp‘𝐾)
8 lcfl6lem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 lcfl6lem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
107, 8, 9dvhlvec 41086 . 2 (𝜑𝑈 ∈ LVec)
117, 8, 9dvhlmod 41087 . . . . 5 (𝜑𝑈 ∈ LMod)
12 lcfl6lem.g . . . . 5 (𝜑𝐺𝐹)
131, 5, 6, 11, 12lkrssv 39072 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
14 lcfl6lem.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
157, 8, 1, 14dochssv 41332 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
169, 13, 15syl2anc 584 . . 3 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
17 lcfl6lem.x . . . 4 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1817eldifad 3943 . . 3 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
1916, 18sseldd 3964 . 2 (𝜑𝑋𝑉)
20 lcfl6lem.z . . 3 0 = (0g𝑈)
21 lcfl6lem.a . . 3 + = (+g𝑈)
22 lcfl6lem.t . . 3 · = ( ·𝑠𝑈)
23 eqid 2734 . . 3 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
24 eldifsni 4770 . . . . 5 (𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) → 𝑋0 )
2517, 24syl 17 . . . 4 (𝜑𝑋0 )
26 eldifsn 4766 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2719, 25, 26sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 41452 . 2 (𝜑 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 41449 . . 3 (𝜑 → (𝐿𝐺) = ( ‘{𝑋}))
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 41450 . . 3 (𝜑 → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ‘{𝑋}))
3129, 30eqtr4d 2772 . 2 (𝜑 → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))))
32 lcfl6lem.y . . 3 (𝜑 → (𝐺𝑋) = 1 )
33 lcfl6lem.i . . . 4 1 = (1r𝑆)
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 41453 . . 3 (𝜑 → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 )
3532, 34eqtr4d 2772 . 2 (𝜑 → (𝐺𝑋) = ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋))
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 41454 . 2 (𝜑 → (𝐺𝑋) ≠ (0g𝑆))
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 39077 1 (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cdif 3928  wss 3931  {csn 4606  cmpt 5205  cfv 6541  crio 7369  (class class class)co 7413  Basecbs 17230  +gcplusg 17274  Scalarcsca 17277   ·𝑠 cvsca 17278  0gc0g 17456  1rcur 20147  LFnlclfn 39033  LKerclk 39061  HLchlt 39326  LHypclh 39961  DVecHcdvh 41055  ocHcoch 41324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38929
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-0g 17458  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19623  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-drng 20700  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lvec 21071  df-lsatoms 38952  df-lshyp 38953  df-lfl 39034  df-lkr 39062  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-llines 39475  df-lplanes 39476  df-lvols 39477  df-lines 39478  df-psubsp 39480  df-pmap 39481  df-padd 39773  df-lhyp 39965  df-laut 39966  df-ldil 40081  df-ltrn 40082  df-trl 40136  df-tgrp 40720  df-tendo 40732  df-edring 40734  df-dveca 40980  df-disoa 41006  df-dvech 41056  df-dib 41116  df-dic 41150  df-dih 41206  df-doch 41325  df-djh 41372
This theorem is referenced by:  lcfl6  41477
  Copyright terms: Public domain W3C validator