Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Visualization version   GIF version

Theorem lcfl6lem 38794
Description: Lemma for lcfl6 38796. A functional 𝐺 (whose kernel is closed by dochsnkr 38768) is comletely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h 𝐻 = (LHyp‘𝐾)
lcfl6lem.o = ((ocH‘𝐾)‘𝑊)
lcfl6lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6lem.v 𝑉 = (Base‘𝑈)
lcfl6lem.a + = (+g𝑈)
lcfl6lem.t · = ( ·𝑠𝑈)
lcfl6lem.s 𝑆 = (Scalar‘𝑈)
lcfl6lem.i 1 = (1r𝑆)
lcfl6lem.r 𝑅 = (Base‘𝑆)
lcfl6lem.z 0 = (0g𝑈)
lcfl6lem.f 𝐹 = (LFnl‘𝑈)
lcfl6lem.l 𝐿 = (LKer‘𝑈)
lcfl6lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6lem.g (𝜑𝐺𝐹)
lcfl6lem.x (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
lcfl6lem.y (𝜑 → (𝐺𝑋) = 1 )
Assertion
Ref Expression
lcfl6lem (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   1 ,𝑘,𝑤   ,𝑘,𝑣,𝑤   𝑅,𝑘,𝑣   𝑆,𝑘   · ,𝑘,𝑣,𝑤   𝑣,𝑉   𝑘,𝑋,𝑣,𝑤   𝑤, 0
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑤,𝑣)   𝑈(𝑤,𝑣,𝑘)   1 (𝑣)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2 𝑉 = (Base‘𝑈)
2 lcfl6lem.s . 2 𝑆 = (Scalar‘𝑈)
3 lcfl6lem.r . 2 𝑅 = (Base‘𝑆)
4 eqid 2798 . 2 (0g𝑆) = (0g𝑆)
5 lcfl6lem.f . 2 𝐹 = (LFnl‘𝑈)
6 lcfl6lem.l . 2 𝐿 = (LKer‘𝑈)
7 lcfl6lem.h . . 3 𝐻 = (LHyp‘𝐾)
8 lcfl6lem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 lcfl6lem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
107, 8, 9dvhlvec 38405 . 2 (𝜑𝑈 ∈ LVec)
117, 8, 9dvhlmod 38406 . . . . 5 (𝜑𝑈 ∈ LMod)
12 lcfl6lem.g . . . . 5 (𝜑𝐺𝐹)
131, 5, 6, 11, 12lkrssv 36392 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
14 lcfl6lem.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
157, 8, 1, 14dochssv 38651 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
169, 13, 15syl2anc 587 . . 3 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
17 lcfl6lem.x . . . 4 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1817eldifad 3893 . . 3 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
1916, 18sseldd 3916 . 2 (𝜑𝑋𝑉)
20 lcfl6lem.z . . 3 0 = (0g𝑈)
21 lcfl6lem.a . . 3 + = (+g𝑈)
22 lcfl6lem.t . . 3 · = ( ·𝑠𝑈)
23 eqid 2798 . . 3 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
24 eldifsni 4683 . . . . 5 (𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) → 𝑋0 )
2517, 24syl 17 . . . 4 (𝜑𝑋0 )
26 eldifsn 4680 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2719, 25, 26sylanbrc 586 . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 38771 . 2 (𝜑 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 38768 . . 3 (𝜑 → (𝐿𝐺) = ( ‘{𝑋}))
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 38769 . . 3 (𝜑 → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ‘{𝑋}))
3129, 30eqtr4d 2836 . 2 (𝜑 → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))))
32 lcfl6lem.y . . 3 (𝜑 → (𝐺𝑋) = 1 )
33 lcfl6lem.i . . . 4 1 = (1r𝑆)
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 38772 . . 3 (𝜑 → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 )
3532, 34eqtr4d 2836 . 2 (𝜑 → (𝐺𝑋) = ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋))
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 38773 . 2 (𝜑 → (𝐺𝑋) ≠ (0g𝑆))
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 36397 1 (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  wss 3881  {csn 4525  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19244  LFnlclfn 36353  LKerclk 36381  HLchlt 36646  LHypclh 37280  DVecHcdvh 38374  ocHcoch 38643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lshyp 36273  df-lfl 36354  df-lkr 36382  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644  df-djh 38691
This theorem is referenced by:  lcfl6  38796
  Copyright terms: Public domain W3C validator