Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl6lem | Structured version Visualization version GIF version |
Description: Lemma for lcfl6 39514. A functional 𝐺 (whose kernel is closed by dochsnkr 39486) is comletely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
Ref | Expression |
---|---|
lcfl6lem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl6lem.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl6lem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl6lem.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl6lem.a | ⊢ + = (+g‘𝑈) |
lcfl6lem.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfl6lem.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfl6lem.i | ⊢ 1 = (1r‘𝑆) |
lcfl6lem.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfl6lem.z | ⊢ 0 = (0g‘𝑈) |
lcfl6lem.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl6lem.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl6lem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl6lem.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl6lem.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
lcfl6lem.y | ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) |
Ref | Expression |
---|---|
lcfl6lem | ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl6lem.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfl6lem.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
3 | lcfl6lem.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
4 | eqid 2738 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
5 | lcfl6lem.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcfl6lem.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcfl6lem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | lcfl6lem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | lcfl6lem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 7, 8, 9 | dvhlvec 39123 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
11 | 7, 8, 9 | dvhlmod 39124 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | lcfl6lem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
13 | 1, 5, 6, 11, 12 | lkrssv 37110 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
14 | lcfl6lem.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | 7, 8, 1, 14 | dochssv 39369 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
16 | 9, 13, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
17 | lcfl6lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
18 | 17 | eldifad 3899 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
19 | 16, 18 | sseldd 3922 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | lcfl6lem.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
21 | lcfl6lem.a | . . 3 ⊢ + = (+g‘𝑈) | |
22 | lcfl6lem.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
23 | eqid 2738 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) | |
24 | eldifsni 4723 | . . . . 5 ⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) → 𝑋 ≠ 0 ) | |
25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
26 | eldifsn 4720 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
27 | 19, 25, 26 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
28 | 7, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27 | dochflcl 39489 | . 2 ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹) |
29 | 7, 14, 8, 1, 20, 5, 6, 9, 12, 17 | dochsnkr 39486 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
30 | 7, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27 | dochsnkr2 39487 | . . 3 ⊢ (𝜑 → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ⊥ ‘{𝑋})) |
31 | 29, 30 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))) |
32 | lcfl6lem.y | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | |
33 | lcfl6lem.i | . . . 4 ⊢ 1 = (1r‘𝑆) | |
34 | 7, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23 | dochfl1 39490 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 ) |
35 | 32, 34 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋)) |
36 | 7, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17 | dochfln0 39491 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ (0g‘𝑆)) |
37 | 1, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36 | eqlkr3 37115 | 1 ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 1rcur 19737 LFnlclfn 37071 LKerclk 37099 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lfl 37072 df-lkr 37100 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 |
This theorem is referenced by: lcfl6 39514 |
Copyright terms: Public domain | W3C validator |