Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Visualization version   GIF version

Theorem lcfl6lem 41516
Description: Lemma for lcfl6 41518. A functional 𝐺 (whose kernel is closed by dochsnkr 41490) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h 𝐻 = (LHyp‘𝐾)
lcfl6lem.o = ((ocH‘𝐾)‘𝑊)
lcfl6lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6lem.v 𝑉 = (Base‘𝑈)
lcfl6lem.a + = (+g𝑈)
lcfl6lem.t · = ( ·𝑠𝑈)
lcfl6lem.s 𝑆 = (Scalar‘𝑈)
lcfl6lem.i 1 = (1r𝑆)
lcfl6lem.r 𝑅 = (Base‘𝑆)
lcfl6lem.z 0 = (0g𝑈)
lcfl6lem.f 𝐹 = (LFnl‘𝑈)
lcfl6lem.l 𝐿 = (LKer‘𝑈)
lcfl6lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6lem.g (𝜑𝐺𝐹)
lcfl6lem.x (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
lcfl6lem.y (𝜑 → (𝐺𝑋) = 1 )
Assertion
Ref Expression
lcfl6lem (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   1 ,𝑘,𝑤   ,𝑘,𝑣,𝑤   𝑅,𝑘,𝑣   𝑆,𝑘   · ,𝑘,𝑣,𝑤   𝑣,𝑉   𝑘,𝑋,𝑣,𝑤   𝑤, 0
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑤,𝑣)   𝑈(𝑤,𝑣,𝑘)   1 (𝑣)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2 𝑉 = (Base‘𝑈)
2 lcfl6lem.s . 2 𝑆 = (Scalar‘𝑈)
3 lcfl6lem.r . 2 𝑅 = (Base‘𝑆)
4 eqid 2730 . 2 (0g𝑆) = (0g𝑆)
5 lcfl6lem.f . 2 𝐹 = (LFnl‘𝑈)
6 lcfl6lem.l . 2 𝐿 = (LKer‘𝑈)
7 lcfl6lem.h . . 3 𝐻 = (LHyp‘𝐾)
8 lcfl6lem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 lcfl6lem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
107, 8, 9dvhlvec 41127 . 2 (𝜑𝑈 ∈ LVec)
117, 8, 9dvhlmod 41128 . . . . 5 (𝜑𝑈 ∈ LMod)
12 lcfl6lem.g . . . . 5 (𝜑𝐺𝐹)
131, 5, 6, 11, 12lkrssv 39114 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
14 lcfl6lem.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
157, 8, 1, 14dochssv 41373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
169, 13, 15syl2anc 584 . . 3 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
17 lcfl6lem.x . . . 4 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1817eldifad 3912 . . 3 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
1916, 18sseldd 3933 . 2 (𝜑𝑋𝑉)
20 lcfl6lem.z . . 3 0 = (0g𝑈)
21 lcfl6lem.a . . 3 + = (+g𝑈)
22 lcfl6lem.t . . 3 · = ( ·𝑠𝑈)
23 eqid 2730 . . 3 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
24 eldifsni 4740 . . . . 5 (𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) → 𝑋0 )
2517, 24syl 17 . . . 4 (𝜑𝑋0 )
26 eldifsn 4736 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2719, 25, 26sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 41493 . 2 (𝜑 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 41490 . . 3 (𝜑 → (𝐿𝐺) = ( ‘{𝑋}))
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 41491 . . 3 (𝜑 → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ‘{𝑋}))
3129, 30eqtr4d 2768 . 2 (𝜑 → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))))
32 lcfl6lem.y . . 3 (𝜑 → (𝐺𝑋) = 1 )
33 lcfl6lem.i . . . 4 1 = (1r𝑆)
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 41494 . . 3 (𝜑 → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 )
3532, 34eqtr4d 2768 . 2 (𝜑 → (𝐺𝑋) = ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋))
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 41495 . 2 (𝜑 → (𝐺𝑋) ≠ (0g𝑆))
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 39119 1 (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  cdif 3897  wss 3900  {csn 4574  cmpt 5170  cfv 6477  crio 7297  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  Scalarcsca 17156   ·𝑠 cvsca 17157  0gc0g 17335  1rcur 20092  LFnlclfn 39075  LKerclk 39103  HLchlt 39368  LHypclh 40002  DVecHcdvh 41096  ocHcoch 41365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-0g 17337  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18330  df-clat 18397  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lvec 21030  df-lsatoms 38994  df-lshyp 38995  df-lfl 39076  df-lkr 39104  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39516  df-lplanes 39517  df-lvols 39518  df-lines 39519  df-psubsp 39521  df-pmap 39522  df-padd 39814  df-lhyp 40006  df-laut 40007  df-ldil 40122  df-ltrn 40123  df-trl 40177  df-tgrp 40761  df-tendo 40773  df-edring 40775  df-dveca 41021  df-disoa 41047  df-dvech 41097  df-dib 41157  df-dic 41191  df-dih 41247  df-doch 41366  df-djh 41413
This theorem is referenced by:  lcfl6  41518
  Copyright terms: Public domain W3C validator