![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl6lem | Structured version Visualization version GIF version |
Description: Lemma for lcfl6 40973. A functional πΊ (whose kernel is closed by dochsnkr 40945) is comletely determined by a vector π in the orthocomplement in its kernel at which the functional value is 1. Note that the β { 0 } in the π hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
Ref | Expression |
---|---|
lcfl6lem.h | β’ π» = (LHypβπΎ) |
lcfl6lem.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcfl6lem.u | β’ π = ((DVecHβπΎ)βπ) |
lcfl6lem.v | β’ π = (Baseβπ) |
lcfl6lem.a | β’ + = (+gβπ) |
lcfl6lem.t | β’ Β· = ( Β·π βπ) |
lcfl6lem.s | β’ π = (Scalarβπ) |
lcfl6lem.i | β’ 1 = (1rβπ) |
lcfl6lem.r | β’ π = (Baseβπ) |
lcfl6lem.z | β’ 0 = (0gβπ) |
lcfl6lem.f | β’ πΉ = (LFnlβπ) |
lcfl6lem.l | β’ πΏ = (LKerβπ) |
lcfl6lem.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcfl6lem.g | β’ (π β πΊ β πΉ) |
lcfl6lem.x | β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) |
lcfl6lem.y | β’ (π β (πΊβπ) = 1 ) |
Ref | Expression |
---|---|
lcfl6lem | β’ (π β πΊ = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl6lem.v | . 2 β’ π = (Baseβπ) | |
2 | lcfl6lem.s | . 2 β’ π = (Scalarβπ) | |
3 | lcfl6lem.r | . 2 β’ π = (Baseβπ) | |
4 | eqid 2728 | . 2 β’ (0gβπ) = (0gβπ) | |
5 | lcfl6lem.f | . 2 β’ πΉ = (LFnlβπ) | |
6 | lcfl6lem.l | . 2 β’ πΏ = (LKerβπ) | |
7 | lcfl6lem.h | . . 3 β’ π» = (LHypβπΎ) | |
8 | lcfl6lem.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
9 | lcfl6lem.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
10 | 7, 8, 9 | dvhlvec 40582 | . 2 β’ (π β π β LVec) |
11 | 7, 8, 9 | dvhlmod 40583 | . . . . 5 β’ (π β π β LMod) |
12 | lcfl6lem.g | . . . . 5 β’ (π β πΊ β πΉ) | |
13 | 1, 5, 6, 11, 12 | lkrssv 38568 | . . . 4 β’ (π β (πΏβπΊ) β π) |
14 | lcfl6lem.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
15 | 7, 8, 1, 14 | dochssv 40828 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β π) |
16 | 9, 13, 15 | syl2anc 583 | . . 3 β’ (π β ( β₯ β(πΏβπΊ)) β π) |
17 | lcfl6lem.x | . . . 4 β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) | |
18 | 17 | eldifad 3959 | . . 3 β’ (π β π β ( β₯ β(πΏβπΊ))) |
19 | 16, 18 | sseldd 3981 | . 2 β’ (π β π β π) |
20 | lcfl6lem.z | . . 3 β’ 0 = (0gβπ) | |
21 | lcfl6lem.a | . . 3 β’ + = (+gβπ) | |
22 | lcfl6lem.t | . . 3 β’ Β· = ( Β·π βπ) | |
23 | eqid 2728 | . . 3 β’ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))) = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))) | |
24 | eldifsni 4794 | . . . . 5 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 }) β π β 0 ) | |
25 | 17, 24 | syl 17 | . . . 4 β’ (π β π β 0 ) |
26 | eldifsn 4791 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
27 | 19, 25, 26 | sylanbrc 582 | . . 3 β’ (π β π β (π β { 0 })) |
28 | 7, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27 | dochflcl 40948 | . 2 β’ (π β (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))) β πΉ) |
29 | 7, 14, 8, 1, 20, 5, 6, 9, 12, 17 | dochsnkr 40945 | . . 3 β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
30 | 7, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27 | dochsnkr2 40946 | . . 3 β’ (π β (πΏβ(π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) = ( β₯ β{π})) |
31 | 29, 30 | eqtr4d 2771 | . 2 β’ (π β (πΏβπΊ) = (πΏβ(π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))))) |
32 | lcfl6lem.y | . . 3 β’ (π β (πΊβπ) = 1 ) | |
33 | lcfl6lem.i | . . . 4 β’ 1 = (1rβπ) | |
34 | 7, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23 | dochfl1 40949 | . . 3 β’ (π β ((π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))βπ) = 1 ) |
35 | 32, 34 | eqtr4d 2771 | . 2 β’ (π β (πΊβπ) = ((π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))βπ)) |
36 | 7, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17 | dochfln0 40950 | . 2 β’ (π β (πΊβπ) β (0gβπ)) |
37 | 1, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36 | eqlkr3 38573 | 1 β’ (π β πΊ = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2937 βwrex 3067 β cdif 3944 β wss 3947 {csn 4629 β¦ cmpt 5231 βcfv 6548 β©crio 7375 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 1rcur 20120 LFnlclfn 38529 LKerclk 38557 HLchlt 38822 LHypclh 39457 DVecHcdvh 40551 ocHcoch 40820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38425 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-undef 8278 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-0g 17422 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cntz 19267 df-lsm 19590 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-drng 20625 df-lmod 20744 df-lss 20815 df-lsp 20855 df-lvec 20987 df-lsatoms 38448 df-lshyp 38449 df-lfl 38530 df-lkr 38558 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-llines 38971 df-lplanes 38972 df-lvols 38973 df-lines 38974 df-psubsp 38976 df-pmap 38977 df-padd 39269 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 df-tgrp 40216 df-tendo 40228 df-edring 40230 df-dveca 40476 df-disoa 40502 df-dvech 40552 df-dib 40612 df-dic 40646 df-dih 40702 df-doch 40821 df-djh 40868 |
This theorem is referenced by: lcfl6 40973 |
Copyright terms: Public domain | W3C validator |