Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Visualization version   GIF version

Theorem lcfl6lem 41607
Description: Lemma for lcfl6 41609. A functional 𝐺 (whose kernel is closed by dochsnkr 41581) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h 𝐻 = (LHyp‘𝐾)
lcfl6lem.o = ((ocH‘𝐾)‘𝑊)
lcfl6lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6lem.v 𝑉 = (Base‘𝑈)
lcfl6lem.a + = (+g𝑈)
lcfl6lem.t · = ( ·𝑠𝑈)
lcfl6lem.s 𝑆 = (Scalar‘𝑈)
lcfl6lem.i 1 = (1r𝑆)
lcfl6lem.r 𝑅 = (Base‘𝑆)
lcfl6lem.z 0 = (0g𝑈)
lcfl6lem.f 𝐹 = (LFnl‘𝑈)
lcfl6lem.l 𝐿 = (LKer‘𝑈)
lcfl6lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6lem.g (𝜑𝐺𝐹)
lcfl6lem.x (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
lcfl6lem.y (𝜑 → (𝐺𝑋) = 1 )
Assertion
Ref Expression
lcfl6lem (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   1 ,𝑘,𝑤   ,𝑘,𝑣,𝑤   𝑅,𝑘,𝑣   𝑆,𝑘   · ,𝑘,𝑣,𝑤   𝑣,𝑉   𝑘,𝑋,𝑣,𝑤   𝑤, 0
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑤,𝑣)   𝑈(𝑤,𝑣,𝑘)   1 (𝑣)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2 𝑉 = (Base‘𝑈)
2 lcfl6lem.s . 2 𝑆 = (Scalar‘𝑈)
3 lcfl6lem.r . 2 𝑅 = (Base‘𝑆)
4 eqid 2733 . 2 (0g𝑆) = (0g𝑆)
5 lcfl6lem.f . 2 𝐹 = (LFnl‘𝑈)
6 lcfl6lem.l . 2 𝐿 = (LKer‘𝑈)
7 lcfl6lem.h . . 3 𝐻 = (LHyp‘𝐾)
8 lcfl6lem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 lcfl6lem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
107, 8, 9dvhlvec 41218 . 2 (𝜑𝑈 ∈ LVec)
117, 8, 9dvhlmod 41219 . . . . 5 (𝜑𝑈 ∈ LMod)
12 lcfl6lem.g . . . . 5 (𝜑𝐺𝐹)
131, 5, 6, 11, 12lkrssv 39205 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
14 lcfl6lem.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
157, 8, 1, 14dochssv 41464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
169, 13, 15syl2anc 584 . . 3 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
17 lcfl6lem.x . . . 4 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1817eldifad 3911 . . 3 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
1916, 18sseldd 3932 . 2 (𝜑𝑋𝑉)
20 lcfl6lem.z . . 3 0 = (0g𝑈)
21 lcfl6lem.a . . 3 + = (+g𝑈)
22 lcfl6lem.t . . 3 · = ( ·𝑠𝑈)
23 eqid 2733 . . 3 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
24 eldifsni 4743 . . . . 5 (𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) → 𝑋0 )
2517, 24syl 17 . . . 4 (𝜑𝑋0 )
26 eldifsn 4739 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2719, 25, 26sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 41584 . 2 (𝜑 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 41581 . . 3 (𝜑 → (𝐿𝐺) = ( ‘{𝑋}))
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 41582 . . 3 (𝜑 → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ‘{𝑋}))
3129, 30eqtr4d 2771 . 2 (𝜑 → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))))
32 lcfl6lem.y . . 3 (𝜑 → (𝐺𝑋) = 1 )
33 lcfl6lem.i . . . 4 1 = (1r𝑆)
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 41585 . . 3 (𝜑 → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 )
3532, 34eqtr4d 2771 . 2 (𝜑 → (𝐺𝑋) = ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋))
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 41586 . 2 (𝜑 → (𝐺𝑋) ≠ (0g𝑆))
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 39210 1 (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wrex 3058  cdif 3896  wss 3899  {csn 4577  cmpt 5176  cfv 6489  crio 7311  (class class class)co 7355  Basecbs 17130  +gcplusg 17171  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353  1rcur 20109  LFnlclfn 39166  LKerclk 39194  HLchlt 39459  LHypclh 40093  DVecHcdvh 41187  ocHcoch 41456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-undef 8212  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-0g 17355  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-p1 18340  df-lat 18348  df-clat 18415  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-cntz 19239  df-lsm 19558  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lvec 21047  df-lsatoms 39085  df-lshyp 39086  df-lfl 39167  df-lkr 39195  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338  df-doch 41457  df-djh 41504
This theorem is referenced by:  lcfl6  41609
  Copyright terms: Public domain W3C validator