| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl6lem | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfl6 41477. A functional 𝐺 (whose kernel is closed by dochsnkr 41449) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcfl6lem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfl6lem.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfl6lem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfl6lem.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfl6lem.a | ⊢ + = (+g‘𝑈) |
| lcfl6lem.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcfl6lem.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfl6lem.i | ⊢ 1 = (1r‘𝑆) |
| lcfl6lem.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcfl6lem.z | ⊢ 0 = (0g‘𝑈) |
| lcfl6lem.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfl6lem.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfl6lem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfl6lem.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lcfl6lem.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
| lcfl6lem.y | ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) |
| Ref | Expression |
|---|---|
| lcfl6lem | ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfl6lem.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | lcfl6lem.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 3 | lcfl6lem.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | eqid 2734 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 5 | lcfl6lem.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lcfl6lem.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
| 7 | lcfl6lem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | lcfl6lem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 9 | lcfl6lem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | 7, 8, 9 | dvhlvec 41086 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 11 | 7, 8, 9 | dvhlmod 41087 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | lcfl6lem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 13 | 1, 5, 6, 11, 12 | lkrssv 39072 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
| 14 | lcfl6lem.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 15 | 7, 8, 1, 14 | dochssv 41332 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
| 16 | 9, 13, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
| 17 | lcfl6lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
| 18 | 17 | eldifad 3943 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
| 19 | 16, 18 | sseldd 3964 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 20 | lcfl6lem.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 21 | lcfl6lem.a | . . 3 ⊢ + = (+g‘𝑈) | |
| 22 | lcfl6lem.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 23 | eqid 2734 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) | |
| 24 | eldifsni 4770 | . . . . 5 ⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 26 | eldifsn 4766 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 27 | 19, 25, 26 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 28 | 7, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27 | dochflcl 41452 | . 2 ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹) |
| 29 | 7, 14, 8, 1, 20, 5, 6, 9, 12, 17 | dochsnkr 41449 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
| 30 | 7, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27 | dochsnkr2 41450 | . . 3 ⊢ (𝜑 → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ⊥ ‘{𝑋})) |
| 31 | 29, 30 | eqtr4d 2772 | . 2 ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))) |
| 32 | lcfl6lem.y | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | |
| 33 | lcfl6lem.i | . . . 4 ⊢ 1 = (1r‘𝑆) | |
| 34 | 7, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23 | dochfl1 41453 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 ) |
| 35 | 32, 34 | eqtr4d 2772 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋)) |
| 36 | 7, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17 | dochfln0 41454 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ (0g‘𝑆)) |
| 37 | 1, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36 | eqlkr3 39077 | 1 ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ↦ cmpt 5205 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Scalarcsca 17277 ·𝑠 cvsca 17278 0gc0g 17456 1rcur 20147 LFnlclfn 39033 LKerclk 39061 HLchlt 39326 LHypclh 39961 DVecHcdvh 41055 ocHcoch 41324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-0g 17458 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lsatoms 38952 df-lshyp 38953 df-lfl 39034 df-lkr 39062 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tgrp 40720 df-tendo 40732 df-edring 40734 df-dveca 40980 df-disoa 41006 df-dvech 41056 df-dib 41116 df-dic 41150 df-dih 41206 df-doch 41325 df-djh 41372 |
| This theorem is referenced by: lcfl6 41477 |
| Copyright terms: Public domain | W3C validator |