![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl6lem | Structured version Visualization version GIF version |
Description: Lemma for lcfl6 41457. A functional 𝐺 (whose kernel is closed by dochsnkr 41429) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
Ref | Expression |
---|---|
lcfl6lem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl6lem.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl6lem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl6lem.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl6lem.a | ⊢ + = (+g‘𝑈) |
lcfl6lem.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfl6lem.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfl6lem.i | ⊢ 1 = (1r‘𝑆) |
lcfl6lem.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfl6lem.z | ⊢ 0 = (0g‘𝑈) |
lcfl6lem.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl6lem.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl6lem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl6lem.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl6lem.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
lcfl6lem.y | ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) |
Ref | Expression |
---|---|
lcfl6lem | ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl6lem.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfl6lem.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
3 | lcfl6lem.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
4 | eqid 2740 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
5 | lcfl6lem.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcfl6lem.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcfl6lem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | lcfl6lem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | lcfl6lem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 7, 8, 9 | dvhlvec 41066 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
11 | 7, 8, 9 | dvhlmod 41067 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | lcfl6lem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
13 | 1, 5, 6, 11, 12 | lkrssv 39052 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
14 | lcfl6lem.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | 7, 8, 1, 14 | dochssv 41312 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
16 | 9, 13, 15 | syl2anc 583 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
17 | lcfl6lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
18 | 17 | eldifad 3988 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
19 | 16, 18 | sseldd 4009 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | lcfl6lem.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
21 | lcfl6lem.a | . . 3 ⊢ + = (+g‘𝑈) | |
22 | lcfl6lem.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
23 | eqid 2740 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) | |
24 | eldifsni 4815 | . . . . 5 ⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) → 𝑋 ≠ 0 ) | |
25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
26 | eldifsn 4811 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
27 | 19, 25, 26 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
28 | 7, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27 | dochflcl 41432 | . 2 ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹) |
29 | 7, 14, 8, 1, 20, 5, 6, 9, 12, 17 | dochsnkr 41429 | . . 3 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
30 | 7, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27 | dochsnkr2 41430 | . . 3 ⊢ (𝜑 → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ⊥ ‘{𝑋})) |
31 | 29, 30 | eqtr4d 2783 | . 2 ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))) |
32 | lcfl6lem.y | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) | |
33 | lcfl6lem.i | . . . 4 ⊢ 1 = (1r‘𝑆) | |
34 | 7, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23 | dochfl1 41433 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 ) |
35 | 32, 34 | eqtr4d 2783 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋)) |
36 | 7, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17 | dochfln0 41434 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ (0g‘𝑆)) |
37 | 1, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36 | eqlkr3 39057 | 1 ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 1rcur 20208 LFnlclfn 39013 LKerclk 39041 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 ocHcoch 41304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lfl 39014 df-lkr 39042 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 |
This theorem is referenced by: lcfl6 41457 |
Copyright terms: Public domain | W3C validator |