Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6lem Structured version   Visualization version   GIF version

Theorem lcfl6lem 41481
Description: Lemma for lcfl6 41483. A functional 𝐺 (whose kernel is closed by dochsnkr 41455) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6lem.h 𝐻 = (LHyp‘𝐾)
lcfl6lem.o = ((ocH‘𝐾)‘𝑊)
lcfl6lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6lem.v 𝑉 = (Base‘𝑈)
lcfl6lem.a + = (+g𝑈)
lcfl6lem.t · = ( ·𝑠𝑈)
lcfl6lem.s 𝑆 = (Scalar‘𝑈)
lcfl6lem.i 1 = (1r𝑆)
lcfl6lem.r 𝑅 = (Base‘𝑆)
lcfl6lem.z 0 = (0g𝑈)
lcfl6lem.f 𝐹 = (LFnl‘𝑈)
lcfl6lem.l 𝐿 = (LKer‘𝑈)
lcfl6lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6lem.g (𝜑𝐺𝐹)
lcfl6lem.x (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
lcfl6lem.y (𝜑 → (𝐺𝑋) = 1 )
Assertion
Ref Expression
lcfl6lem (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   1 ,𝑘,𝑤   ,𝑘,𝑣,𝑤   𝑅,𝑘,𝑣   𝑆,𝑘   · ,𝑘,𝑣,𝑤   𝑣,𝑉   𝑘,𝑋,𝑣,𝑤   𝑤, 0
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑤,𝑣)   𝑈(𝑤,𝑣,𝑘)   1 (𝑣)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl6lem
StepHypRef Expression
1 lcfl6lem.v . 2 𝑉 = (Base‘𝑈)
2 lcfl6lem.s . 2 𝑆 = (Scalar‘𝑈)
3 lcfl6lem.r . 2 𝑅 = (Base‘𝑆)
4 eqid 2735 . 2 (0g𝑆) = (0g𝑆)
5 lcfl6lem.f . 2 𝐹 = (LFnl‘𝑈)
6 lcfl6lem.l . 2 𝐿 = (LKer‘𝑈)
7 lcfl6lem.h . . 3 𝐻 = (LHyp‘𝐾)
8 lcfl6lem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 lcfl6lem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
107, 8, 9dvhlvec 41092 . 2 (𝜑𝑈 ∈ LVec)
117, 8, 9dvhlmod 41093 . . . . 5 (𝜑𝑈 ∈ LMod)
12 lcfl6lem.g . . . . 5 (𝜑𝐺𝐹)
131, 5, 6, 11, 12lkrssv 39078 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
14 lcfl6lem.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
157, 8, 1, 14dochssv 41338 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
169, 13, 15syl2anc 584 . . 3 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
17 lcfl6lem.x . . . 4 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1817eldifad 3975 . . 3 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
1916, 18sseldd 3996 . 2 (𝜑𝑋𝑉)
20 lcfl6lem.z . . 3 0 = (0g𝑈)
21 lcfl6lem.a . . 3 + = (+g𝑈)
22 lcfl6lem.t . . 3 · = ( ·𝑠𝑈)
23 eqid 2735 . . 3 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
24 eldifsni 4795 . . . . 5 (𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) → 𝑋0 )
2517, 24syl 17 . . . 4 (𝜑𝑋0 )
26 eldifsn 4791 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2719, 25, 26sylanbrc 583 . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
287, 14, 8, 1, 20, 21, 22, 5, 2, 3, 23, 9, 27dochflcl 41458 . 2 (𝜑 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) ∈ 𝐹)
297, 14, 8, 1, 20, 5, 6, 9, 12, 17dochsnkr 41455 . . 3 (𝜑 → (𝐿𝐺) = ( ‘{𝑋}))
307, 14, 8, 1, 20, 21, 22, 6, 2, 3, 23, 9, 27dochsnkr2 41456 . . 3 (𝜑 → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) = ( ‘{𝑋}))
3129, 30eqtr4d 2778 . 2 (𝜑 → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))))
32 lcfl6lem.y . . 3 (𝜑 → (𝐺𝑋) = 1 )
33 lcfl6lem.i . . . 4 1 = (1r𝑆)
347, 14, 8, 1, 21, 22, 20, 2, 3, 33, 9, 27, 23dochfl1 41459 . . 3 (𝜑 → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋) = 1 )
3532, 34eqtr4d 2778 . 2 (𝜑 → (𝐺𝑋) = ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))‘𝑋))
367, 14, 8, 1, 2, 4, 20, 5, 6, 9, 12, 17dochfln0 41460 . 2 (𝜑 → (𝐺𝑋) ≠ (0g𝑆))
371, 2, 3, 4, 5, 6, 10, 19, 12, 28, 31, 35, 36eqlkr3 39083 1 (𝜑𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cdif 3960  wss 3963  {csn 4631  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  1rcur 20199  LFnlclfn 39039  LKerclk 39067  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  ocHcoch 41330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lfl 39040  df-lkr 39068  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378
This theorem is referenced by:  lcfl6  41483
  Copyright terms: Public domain W3C validator