Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgiov Structured version   Visualization version   GIF version

Theorem gpgedgiov 48069
Description: The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.)
Hypotheses
Ref Expression
gpgedgiov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgiov.i 𝐼 = (0..^𝑁)
gpgedgiov.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgiov.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgiov (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))

Proof of Theorem gpgedgiov
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
2 c0ex 11128 . . . . . . . . . 10 0 ∈ V
32a1i 11 . . . . . . . . 9 (𝑌𝐼 → 0 ∈ V)
43anim1i 615 . . . . . . . 8 ((𝑌𝐼𝑋𝐼) → (0 ∈ V ∧ 𝑋𝐼))
54ancoms 458 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (0 ∈ V ∧ 𝑋𝐼))
6 op1stg 7943 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
75, 6syl 17 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
87ad2antlr 727 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (1st ‘⟨0, 𝑋⟩) = 0)
9 simpr 484 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
10 gpgedgiov.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
11 gpgedgiov.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
12 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
13 gpgedgiov.e . . . . . 6 𝐸 = (Edg‘𝐺)
1410, 11, 12, 13gpgvtxedg0 48067 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st ‘⟨0, 𝑋⟩) = 0 ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
151, 8, 9, 14syl3anc 1373 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
1615ex 412 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩)))
17 ovex 7386 . . . . . . . . 9 ((𝑋 + 1) mod 𝑁) ∈ V
182, 17pm3.2i 470 . . . . . . . 8 (0 ∈ V ∧ ((𝑋 + 1) mod 𝑁) ∈ V)
19 opthg2 5426 . . . . . . . 8 ((0 ∈ V ∧ ((𝑋 + 1) mod 𝑁) ∈ V) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁))))
2018, 19mp1i 13 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁))))
21 ax-1ne0 11097 . . . . . . . . 9 1 ≠ 0
22 eqneqall 2936 . . . . . . . . 9 (1 = 0 → (1 ≠ 0 → (𝑌 = ((𝑋 + 1) mod 𝑁) → 𝑋 = 𝑌)))
2321, 22mpi 20 . . . . . . . 8 (1 = 0 → (𝑌 = ((𝑋 + 1) mod 𝑁) → 𝑋 = 𝑌))
2423imp 406 . . . . . . 7 ((1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁)) → 𝑋 = 𝑌)
2520, 24biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
26 1ex 11130 . . . . . . . . . . 11 1 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝑌𝐼 → 1 ∈ V)
2827anim1i 615 . . . . . . . . 9 ((𝑌𝐼𝑋𝐼) → (1 ∈ V ∧ 𝑋𝐼))
2928ancoms 458 . . . . . . . 8 ((𝑋𝐼𝑌𝐼) → (1 ∈ V ∧ 𝑋𝐼))
30 opthg2 5426 . . . . . . . 8 ((1 ∈ V ∧ 𝑋𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ↔ (1 = 1 ∧ 𝑌 = 𝑋)))
3129, 30syl 17 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ↔ (1 = 1 ∧ 𝑌 = 𝑋)))
32 simpr 484 . . . . . . . 8 ((1 = 1 ∧ 𝑌 = 𝑋) → 𝑌 = 𝑋)
3332eqcomd 2735 . . . . . . 7 ((1 = 1 ∧ 𝑌 = 𝑋) → 𝑋 = 𝑌)
3431, 33biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ → 𝑋 = 𝑌))
35 ovex 7386 . . . . . . . . 9 ((𝑋 − 1) mod 𝑁) ∈ V
362, 35pm3.2i 470 . . . . . . . 8 (0 ∈ V ∧ ((𝑋 − 1) mod 𝑁) ∈ V)
37 opthg2 5426 . . . . . . . 8 ((0 ∈ V ∧ ((𝑋 − 1) mod 𝑁) ∈ V) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁))))
3836, 37mp1i 13 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁))))
39 eqneqall 2936 . . . . . . . . 9 (1 = 0 → (1 ≠ 0 → (𝑌 = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
4021, 39mpi 20 . . . . . . . 8 (1 = 0 → (𝑌 = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌))
4140imp 406 . . . . . . 7 ((1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁)) → 𝑋 = 𝑌)
4238, 41biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
4325, 34, 423jaod 1431 . . . . 5 ((𝑋𝐼𝑌𝐼) → ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
44 op2ndg 7944 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
455, 44syl 17 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
46 oveq1 7360 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) + 1) = (𝑋 + 1))
4746oveq1d 7368 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁))
4847opeq2d 4834 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩)
4948eqeq2d 2740 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ↔ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩))
50 opeq2 4828 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ = ⟨1, 𝑋⟩)
5150eqeq2d 2740 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ↔ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩))
52 oveq1 7360 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) − 1) = (𝑋 − 1))
5352oveq1d 7368 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁))
5453opeq2d 4834 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)
5554eqeq2d 2740 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ ↔ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩))
5649, 51, 553orbi123d 1437 . . . . . . 7 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) ↔ (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)))
5756imbi1d 341 . . . . . 6 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌) ↔ ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
5845, 57syl 17 . . . . 5 ((𝑋𝐼𝑌𝐼) → (((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌) ↔ ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
5943, 58mpbird 257 . . . 4 ((𝑋𝐼𝑌𝐼) → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
6059adantl 481 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
6116, 60syld 47 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))
62 simpr 484 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → 𝑌𝐼)
6362ad2antlr 727 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → 𝑌𝐼)
64 opeq2 4828 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨0, 𝑥⟩ = ⟨0, 𝑌⟩)
65 oveq1 7360 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 + 1) = (𝑌 + 1))
6665oveq1d 7368 . . . . . . . . . . 11 (𝑥 = 𝑌 → ((𝑥 + 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁))
6766opeq2d 4834 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩)
6864, 67preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩})
6968eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩}))
70 opeq2 4828 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨1, 𝑥⟩ = ⟨1, 𝑌⟩)
7164, 70preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
7271eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩}))
73 oveq1 7360 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 + 𝐾) = (𝑌 + 𝐾))
7473oveq1d 7368 . . . . . . . . . . 11 (𝑥 = 𝑌 → ((𝑥 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁))
7574opeq2d 4834 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩)
7670, 75preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})
7776eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩}))
7869, 72, 773orbi123d 1437 . . . . . . 7 (𝑥 = 𝑌 → (({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})))
7978adantl 481 . . . . . 6 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) ∧ 𝑥 = 𝑌) → (({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})))
80 eqidd 2730 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
81803mix2d 1338 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩}))
8263, 79, 81rspcedvd 3581 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
83 gpgedgiov.i . . . . . . 7 𝐼 = (0..^𝑁)
8483, 10, 11, 13gpgedgel 48054 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
8584ad2antrr 726 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
8682, 85mpbird 257 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
87 opeq2 4828 . . . . . . 7 (𝑋 = 𝑌 → ⟨0, 𝑋⟩ = ⟨0, 𝑌⟩)
8887preq1d 4693 . . . . . 6 (𝑋 = 𝑌 → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
8988eleq1d 2813 . . . . 5 (𝑋 = 𝑌 → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9089adantl 481 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9186, 90mpbird 257 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
9291ex 412 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 = 𝑌 → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9361, 92impbid 212 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  {cpr 4581  cop 4585  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cmin 11366   / cdiv 11796  2c2 12202  3c3 12203  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  Vtxcvtx 28960  Edgcedg 29011   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-hash 14257  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-umgr 29047  df-usgr 29115  df-gpg 48045
This theorem is referenced by:  pgnbgreunbgrlem1  48117  pgnbgreunbgrlem4  48123
  Copyright terms: Public domain W3C validator