Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgiov Structured version   Visualization version   GIF version

Theorem gpgedgiov 48227
Description: The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.)
Hypotheses
Ref Expression
gpgedgiov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgiov.i 𝐼 = (0..^𝑁)
gpgedgiov.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgiov.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgiov (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))

Proof of Theorem gpgedgiov
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
2 c0ex 11117 . . . . . . . . . 10 0 ∈ V
32a1i 11 . . . . . . . . 9 (𝑌𝐼 → 0 ∈ V)
43anim1i 615 . . . . . . . 8 ((𝑌𝐼𝑋𝐼) → (0 ∈ V ∧ 𝑋𝐼))
54ancoms 458 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (0 ∈ V ∧ 𝑋𝐼))
6 op1stg 7942 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
75, 6syl 17 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
87ad2antlr 727 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (1st ‘⟨0, 𝑋⟩) = 0)
9 simpr 484 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
10 gpgedgiov.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
11 gpgedgiov.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
12 eqid 2733 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
13 gpgedgiov.e . . . . . 6 𝐸 = (Edg‘𝐺)
1410, 11, 12, 13gpgvtxedg0 48225 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st ‘⟨0, 𝑋⟩) = 0 ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
151, 8, 9, 14syl3anc 1373 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸) → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
1615ex 412 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩)))
17 ovex 7388 . . . . . . . . 9 ((𝑋 + 1) mod 𝑁) ∈ V
182, 17pm3.2i 470 . . . . . . . 8 (0 ∈ V ∧ ((𝑋 + 1) mod 𝑁) ∈ V)
19 opthg2 5424 . . . . . . . 8 ((0 ∈ V ∧ ((𝑋 + 1) mod 𝑁) ∈ V) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁))))
2018, 19mp1i 13 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁))))
21 ax-1ne0 11086 . . . . . . . . 9 1 ≠ 0
22 eqneqall 2940 . . . . . . . . 9 (1 = 0 → (1 ≠ 0 → (𝑌 = ((𝑋 + 1) mod 𝑁) → 𝑋 = 𝑌)))
2321, 22mpi 20 . . . . . . . 8 (1 = 0 → (𝑌 = ((𝑋 + 1) mod 𝑁) → 𝑋 = 𝑌))
2423imp 406 . . . . . . 7 ((1 = 0 ∧ 𝑌 = ((𝑋 + 1) mod 𝑁)) → 𝑋 = 𝑌)
2520, 24biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
26 1ex 11119 . . . . . . . . . . 11 1 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝑌𝐼 → 1 ∈ V)
2827anim1i 615 . . . . . . . . 9 ((𝑌𝐼𝑋𝐼) → (1 ∈ V ∧ 𝑋𝐼))
2928ancoms 458 . . . . . . . 8 ((𝑋𝐼𝑌𝐼) → (1 ∈ V ∧ 𝑋𝐼))
30 opthg2 5424 . . . . . . . 8 ((1 ∈ V ∧ 𝑋𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ↔ (1 = 1 ∧ 𝑌 = 𝑋)))
3129, 30syl 17 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ↔ (1 = 1 ∧ 𝑌 = 𝑋)))
32 simpr 484 . . . . . . . 8 ((1 = 1 ∧ 𝑌 = 𝑋) → 𝑌 = 𝑋)
3332eqcomd 2739 . . . . . . 7 ((1 = 1 ∧ 𝑌 = 𝑋) → 𝑋 = 𝑌)
3431, 33biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ → 𝑋 = 𝑌))
35 ovex 7388 . . . . . . . . 9 ((𝑋 − 1) mod 𝑁) ∈ V
362, 35pm3.2i 470 . . . . . . . 8 (0 ∈ V ∧ ((𝑋 − 1) mod 𝑁) ∈ V)
37 opthg2 5424 . . . . . . . 8 ((0 ∈ V ∧ ((𝑋 − 1) mod 𝑁) ∈ V) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁))))
3836, 37mp1i 13 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ (1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁))))
39 eqneqall 2940 . . . . . . . . 9 (1 = 0 → (1 ≠ 0 → (𝑌 = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
4021, 39mpi 20 . . . . . . . 8 (1 = 0 → (𝑌 = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌))
4140imp 406 . . . . . . 7 ((1 = 0 ∧ 𝑌 = ((𝑋 − 1) mod 𝑁)) → 𝑋 = 𝑌)
4238, 41biimtrdi 253 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
4325, 34, 423jaod 1431 . . . . 5 ((𝑋𝐼𝑌𝐼) → ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
44 op2ndg 7943 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
455, 44syl 17 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
46 oveq1 7362 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) + 1) = (𝑋 + 1))
4746oveq1d 7370 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁))
4847opeq2d 4833 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩)
4948eqeq2d 2744 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ↔ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩))
50 opeq2 4827 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ = ⟨1, 𝑋⟩)
5150eqeq2d 2744 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ↔ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩))
52 oveq1 7362 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) − 1) = (𝑋 − 1))
5352oveq1d 7370 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁))
5453opeq2d 4833 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)
5554eqeq2d 2744 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ ↔ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩))
5649, 51, 553orbi123d 1437 . . . . . . 7 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) ↔ (⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)))
5756imbi1d 341 . . . . . 6 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌) ↔ ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
5845, 57syl 17 . . . . 5 ((𝑋𝐼𝑌𝐼) → (((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌) ↔ ((⟨1, 𝑌⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, 𝑋⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
5943, 58mpbird 257 . . . 4 ((𝑋𝐼𝑌𝐼) → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
6059adantl 481 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨1, 𝑌⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨1, 𝑌⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
6116, 60syld 47 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))
62 simpr 484 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → 𝑌𝐼)
6362ad2antlr 727 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → 𝑌𝐼)
64 opeq2 4827 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨0, 𝑥⟩ = ⟨0, 𝑌⟩)
65 oveq1 7362 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 + 1) = (𝑌 + 1))
6665oveq1d 7370 . . . . . . . . . . 11 (𝑥 = 𝑌 → ((𝑥 + 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁))
6766opeq2d 4833 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩)
6864, 67preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩})
6968eqeq2d 2744 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩}))
70 opeq2 4827 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨1, 𝑥⟩ = ⟨1, 𝑌⟩)
7164, 70preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
7271eqeq2d 2744 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩}))
73 oveq1 7362 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑥 + 𝐾) = (𝑌 + 𝐾))
7473oveq1d 7370 . . . . . . . . . . 11 (𝑥 = 𝑌 → ((𝑥 + 𝐾) mod 𝑁) = ((𝑌 + 𝐾) mod 𝑁))
7574opeq2d 4833 . . . . . . . . . 10 (𝑥 = 𝑌 → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩)
7670, 75preq12d 4695 . . . . . . . . 9 (𝑥 = 𝑌 → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})
7776eqeq2d 2744 . . . . . . . 8 (𝑥 = 𝑌 → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩}))
7869, 72, 773orbi123d 1437 . . . . . . 7 (𝑥 = 𝑌 → (({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})))
7978adantl 481 . . . . . 6 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) ∧ 𝑥 = 𝑌) → (({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩})))
80 eqidd 2734 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
81803mix2d 1338 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑌⟩, ⟨1, ((𝑌 + 𝐾) mod 𝑁)⟩}))
8263, 79, 81rspcedvd 3575 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
83 gpgedgiov.i . . . . . . 7 𝐼 = (0..^𝑁)
8483, 10, 11, 13gpgedgel 48212 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
8584ad2antrr 726 . . . . 5 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ ∃𝑥𝐼 ({⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
8682, 85mpbird 257 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
87 opeq2 4827 . . . . . . 7 (𝑋 = 𝑌 → ⟨0, 𝑋⟩ = ⟨0, 𝑌⟩)
8887preq1d 4693 . . . . . 6 (𝑋 = 𝑌 → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} = {⟨0, 𝑌⟩, ⟨1, 𝑌⟩})
8988eleq1d 2818 . . . . 5 (𝑋 = 𝑌 → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9089adantl 481 . . . 4 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9186, 90mpbird 257 . . 3 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ 𝑋 = 𝑌) → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸)
9291ex 412 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 = 𝑌 → {⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸))
9361, 92impbid 212 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨1, 𝑌⟩} ∈ 𝐸𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  {cpr 4579  cop 4583  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-umgr 29082  df-usgr 29150  df-gpg 48203
This theorem is referenced by:  pgnbgreunbgrlem1  48275  pgnbgreunbgrlem4  48281
  Copyright terms: Public domain W3C validator