Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtxedg0 Structured version   Visualization version   GIF version

Theorem gpgvtxedg0 48225
Description: The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgedgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgvtx0.v 𝑉 = (Vtx‘𝐺)
gpgedgvtx0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgvtxedg0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))

Proof of Theorem gpgvtxedg0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gpgusgra 48219 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
2 gpgedgvtx0.j . . . . . . 7 𝐽 = (1..^(⌈‘(𝑁 / 2)))
32eleq2i 2825 . . . . . 6 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
43anbi2i 623 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ↔ (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
5 gpgedgvtx0.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
65eleq1i 2824 . . . . 5 (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 𝐾) ∈ USGraph)
71, 4, 63imtr4i 292 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
873ad2ant1 1133 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝐺 ∈ USGraph)
9 simp3 1138 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑋, 𝑌} ∈ 𝐸)
10 gpgedgvtx0.e . . . 4 𝐸 = (Edg‘𝐺)
11 gpgedgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
1210, 11usgrpredgv 29196 . . 3 ((𝐺 ∈ USGraph ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
138, 9, 12syl2anc 584 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
14 eqid 2733 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1514, 2, 5, 10gpgedgel 48212 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
16153ad2ant1 1133 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
17 simp3 1138 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
1817adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋𝑉𝑌𝑉))
19 opex 5409 . . . . . . . . . . 11 ⟨0, 𝑦⟩ ∈ V
20 opex 5409 . . . . . . . . . . 11 ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V
2119, 20pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)
22 preq12bg 4806 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
2318, 21, 22sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
24 simpr 484 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩)
25 c0ex 11117 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
26 vex 3441 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
2725, 26op2ndd 7941 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨0, 𝑦⟩ → (2nd𝑋) = 𝑦)
2827eqcomd 2739 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, 𝑦⟩ → 𝑦 = (2nd𝑋))
2928oveq1d 7370 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, 𝑦⟩ → (𝑦 + 1) = ((2nd𝑋) + 1))
3029oveq1d 7370 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, 𝑦⟩ → ((𝑦 + 1) mod 𝑁) = (((2nd𝑋) + 1) mod 𝑁))
3130adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → ((𝑦 + 1) mod 𝑁) = (((2nd𝑋) + 1) mod 𝑁))
3231opeq2d 4833 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → ⟨0, ((𝑦 + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
3324, 32eqtrd 2768 . . . . . . . . . . . 12 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → 𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
34333mix1d 1337 . . . . . . . . . . 11 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
3534a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
36 elfzoelz 13566 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
3736zred 12587 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℝ)
38 1red 11124 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 1 ∈ ℝ)
3937, 38readdcld 11152 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → (𝑦 + 1) ∈ ℝ)
40 elfzo0 13607 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) ↔ (𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁))
41 nnrp 12908 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑁 ∈ ℝ+)
4340, 42sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → 𝑁 ∈ ℝ+)
44 modsubmod 13843 . . . . . . . . . . . . . . . . . 18 (((𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁) = (((𝑦 + 1) − 1) mod 𝑁))
4539, 38, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁) = (((𝑦 + 1) − 1) mod 𝑁))
4636zcnd 12588 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℂ)
47 pncan1 11552 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦)
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → ((𝑦 + 1) − 1) = 𝑦)
4948oveq1d 7370 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → (((𝑦 + 1) − 1) mod 𝑁) = (𝑦 mod 𝑁))
50 zmodidfzoimp 13812 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → (𝑦 mod 𝑁) = 𝑦)
5145, 49, 503eqtrrd 2773 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0..^𝑁) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5251adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5352adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5453opeq2d 4833 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → 𝑌 = ⟨0, 𝑦⟩)
56 ovex 7388 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 1) mod 𝑁) ∈ V
5725, 56op2ndd 7941 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (2nd𝑋) = ((𝑦 + 1) mod 𝑁))
5857oveq1d 7370 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ((2nd𝑋) − 1) = (((𝑦 + 1) mod 𝑁) − 1))
5958oveq1d 7370 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (((2nd𝑋) − 1) mod 𝑁) = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
6059opeq2d 4833 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
6160adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
6255, 61eqeq12d 2749 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩))
6362adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩))
6454, 63mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
65643mix3d 1339 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
6665ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
6735, 66jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
6823, 67sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
69 opex 5409 . . . . . . . . . . 11 ⟨1, 𝑦⟩ ∈ V
7019, 69pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)
71 preq12bg 4806 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
7218, 70, 71sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
73 simpr 484 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑌 = ⟨1, 𝑦⟩)
7428adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑦 = (2nd𝑋))
7574opeq2d 4833 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → ⟨1, 𝑦⟩ = ⟨1, (2nd𝑋)⟩)
7673, 75eqtrd 2768 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑌 = ⟨1, (2nd𝑋)⟩)
7776adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → 𝑌 = ⟨1, (2nd𝑋)⟩)
78773mix2d 1338 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
7978ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
80 1ex 11119 . . . . . . . . . . . . . . . . 17 1 ∈ V
8180, 26op1std 7940 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, 𝑦⟩ → (1st𝑋) = 1)
8281eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 ↔ 1 = 0))
83 ax-1ne0 11086 . . . . . . . . . . . . . . . 16 1 ≠ 0
84 eqneqall 2940 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8584com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8683, 85mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8782, 86sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8887com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
89883ad2ant2 1134 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9089adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9190impd 410 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
9279, 91jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
9372, 92sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
94 opex 5409 . . . . . . . . . . 11 ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V
9569, 94pm3.2i 470 . . . . . . . . . 10 (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)
96 preq12bg 4806 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
9718, 95, 96sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
98 eqneqall 2940 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9998com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10083, 99mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10182, 100sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
102101com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
103102impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 0 → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
104 ovex 7388 . . . . . . . . . . . . . . . . 17 ((𝑦 + 𝐾) mod 𝑁) ∈ V
10580, 104op1std 7940 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (1st𝑋) = 1)
106105eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ((1st𝑋) = 0 ↔ 1 = 0))
107 eqneqall 2940 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
108107com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10983, 108mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
110106, 109sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
111110com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
112111impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 0 → ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
113103, 112jaod 859 . . . . . . . . . . 11 ((1st𝑋) = 0 → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
1141133ad2ant2 1134 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
115114adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11697, 115sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11768, 93, 1163jaod 1431 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
118117rexlimdva 3134 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11916, 118sylbid 240 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
1201193exp 1119 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 0 → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))))
121120com34 91 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 0 → ({𝑋, 𝑌} ∈ 𝐸 → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))))
1221213imp 1110 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
12313, 122mpd 15 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  {cpr 4579  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  3c3 12192  0cn0 12392  cuz 12742  +crp 12896  ..^cfzo 13561  cceil 13702   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046  USGraphcusgr 29148   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-umgr 29082  df-usgr 29150  df-gpg 48203
This theorem is referenced by:  gpgedgiov  48227  gpgedg2ov  48228  gpgnbgrvtx0  48236  pgnbgreunbgrlem2lem1  48276  pgnbgreunbgrlem2lem2  48277  pgnbgreunbgrlem2lem3  48278  pgnbgreunbgrlem5lem3  48284
  Copyright terms: Public domain W3C validator