Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtxedg0 Structured version   Visualization version   GIF version

Theorem gpgvtxedg0 48044
Description: The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgedgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgvtx0.v 𝑉 = (Vtx‘𝐺)
gpgedgvtx0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgvtxedg0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))

Proof of Theorem gpgvtxedg0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gpgusgra 48038 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
2 gpgedgvtx0.j . . . . . . 7 𝐽 = (1..^(⌈‘(𝑁 / 2)))
32eleq2i 2821 . . . . . 6 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
43anbi2i 623 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ↔ (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
5 gpgedgvtx0.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
65eleq1i 2820 . . . . 5 (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 𝐾) ∈ USGraph)
71, 4, 63imtr4i 292 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
873ad2ant1 1133 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝐺 ∈ USGraph)
9 simp3 1138 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑋, 𝑌} ∈ 𝐸)
10 gpgedgvtx0.e . . . 4 𝐸 = (Edg‘𝐺)
11 gpgedgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
1210, 11usgrpredgv 29130 . . 3 ((𝐺 ∈ USGraph ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
138, 9, 12syl2anc 584 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑋𝑉𝑌𝑉))
14 eqid 2730 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1514, 2, 5, 10gpgedgel 48031 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
16153ad2ant1 1133 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 ↔ ∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩})))
17 simp3 1138 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
1817adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋𝑉𝑌𝑉))
19 opex 5426 . . . . . . . . . . 11 ⟨0, 𝑦⟩ ∈ V
20 opex 5426 . . . . . . . . . . 11 ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V
2119, 20pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)
22 preq12bg 4819 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
2318, 21, 22sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
24 simpr 484 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩)
25 c0ex 11174 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
26 vex 3454 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
2725, 26op2ndd 7981 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨0, 𝑦⟩ → (2nd𝑋) = 𝑦)
2827eqcomd 2736 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, 𝑦⟩ → 𝑦 = (2nd𝑋))
2928oveq1d 7404 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, 𝑦⟩ → (𝑦 + 1) = ((2nd𝑋) + 1))
3029oveq1d 7404 . . . . . . . . . . . . . . 15 (𝑋 = ⟨0, 𝑦⟩ → ((𝑦 + 1) mod 𝑁) = (((2nd𝑋) + 1) mod 𝑁))
3130adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → ((𝑦 + 1) mod 𝑁) = (((2nd𝑋) + 1) mod 𝑁))
3231opeq2d 4846 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → ⟨0, ((𝑦 + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
3324, 32eqtrd 2765 . . . . . . . . . . . 12 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → 𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
34333mix1d 1337 . . . . . . . . . . 11 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
3534a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
36 elfzoelz 13626 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
3736zred 12644 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℝ)
38 1red 11181 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 1 ∈ ℝ)
3937, 38readdcld 11209 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → (𝑦 + 1) ∈ ℝ)
40 elfzo0 13667 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) ↔ (𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁))
41 nnrp 12969 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑁 ∈ ℝ+)
4340, 42sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → 𝑁 ∈ ℝ+)
44 modsubmod 13900 . . . . . . . . . . . . . . . . . 18 (((𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁) = (((𝑦 + 1) − 1) mod 𝑁))
4539, 38, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁) = (((𝑦 + 1) − 1) mod 𝑁))
4636zcnd 12645 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℂ)
47 pncan1 11608 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦)
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^𝑁) → ((𝑦 + 1) − 1) = 𝑦)
4948oveq1d 7404 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → (((𝑦 + 1) − 1) mod 𝑁) = (𝑦 mod 𝑁))
50 zmodidfzoimp 13869 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^𝑁) → (𝑦 mod 𝑁) = 𝑦)
5145, 49, 503eqtrrd 2770 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0..^𝑁) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5251adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5352adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → 𝑦 = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
5453opeq2d 4846 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → 𝑌 = ⟨0, 𝑦⟩)
56 ovex 7422 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 + 1) mod 𝑁) ∈ V
5725, 56op2ndd 7981 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (2nd𝑋) = ((𝑦 + 1) mod 𝑁))
5857oveq1d 7404 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ((2nd𝑋) − 1) = (((𝑦 + 1) mod 𝑁) − 1))
5958oveq1d 7404 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → (((2nd𝑋) − 1) mod 𝑁) = ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁))
6059opeq2d 4846 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
6160adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩)
6255, 61eqeq12d 2746 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩))
6362adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ ⟨0, 𝑦⟩ = ⟨0, ((((𝑦 + 1) mod 𝑁) − 1) mod 𝑁)⟩))
6454, 63mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
65643mix3d 1339 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
6665ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
6735, 66jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩) ∨ (𝑋 = ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
6823, 67sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
69 opex 5426 . . . . . . . . . . 11 ⟨1, 𝑦⟩ ∈ V
7019, 69pm3.2i 470 . . . . . . . . . 10 (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)
71 preq12bg 4819 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨0, 𝑦⟩ ∈ V ∧ ⟨1, 𝑦⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
7218, 70, 71sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ↔ ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩))))
73 simpr 484 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑌 = ⟨1, 𝑦⟩)
7428adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑦 = (2nd𝑋))
7574opeq2d 4846 . . . . . . . . . . . . . 14 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → ⟨1, 𝑦⟩ = ⟨1, (2nd𝑋)⟩)
7673, 75eqtrd 2765 . . . . . . . . . . . . 13 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → 𝑌 = ⟨1, (2nd𝑋)⟩)
7776adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → 𝑌 = ⟨1, (2nd𝑋)⟩)
78773mix2d 1338 . . . . . . . . . . 11 (((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) ∧ (𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
7978ex 412 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
80 1ex 11176 . . . . . . . . . . . . . . . . 17 1 ∈ V
8180, 26op1std 7980 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, 𝑦⟩ → (1st𝑋) = 1)
8281eqeq1d 2732 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 ↔ 1 = 0))
83 ax-1ne0 11143 . . . . . . . . . . . . . . . 16 1 ≠ 0
84 eqneqall 2937 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8584com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8683, 85mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8782, 86sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
8887com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
89883ad2ant2 1134 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9089adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9190impd 410 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
9279, 91jaod 859 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) ∨ (𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨0, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
9372, 92sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
94 opex 5426 . . . . . . . . . . 11 ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V
9569, 94pm3.2i 470 . . . . . . . . . 10 (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)
96 preq12bg 4819 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ (⟨1, 𝑦⟩ ∈ V ∧ ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∈ V)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
9718, 95, 96sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} ↔ ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩))))
98 eqneqall 2937 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
9998com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10083, 99mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, 𝑦⟩ → (1 = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10182, 100sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, 𝑦⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
102101com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, 𝑦⟩ → (𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
103102impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 0 → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
104 ovex 7422 . . . . . . . . . . . . . . . . 17 ((𝑦 + 𝐾) mod 𝑁) ∈ V
10580, 104op1std 7980 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (1st𝑋) = 1)
106105eqeq1d 2732 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ((1st𝑋) = 0 ↔ 1 = 0))
107 eqneqall 2937 . . . . . . . . . . . . . . . . 17 (1 = 0 → (1 ≠ 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
108107com12 32 . . . . . . . . . . . . . . . 16 (1 ≠ 0 → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
10983, 108mp1i 13 . . . . . . . . . . . . . . 15 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (1 = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
110106, 109sylbid 240 . . . . . . . . . . . . . 14 (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → ((1st𝑋) = 0 → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
111110com12 32 . . . . . . . . . . . . 13 ((1st𝑋) = 0 → (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ → (𝑌 = ⟨1, 𝑦⟩ → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))))
112111impd 410 . . . . . . . . . . . 12 ((1st𝑋) = 0 → ((𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
113103, 112jaod 859 . . . . . . . . . . 11 ((1st𝑋) = 0 → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
1141133ad2ant2 1134 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
115114adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑌 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩) ∨ (𝑋 = ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩ ∧ 𝑌 = ⟨1, 𝑦⟩)) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11697, 115sylbid 240 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → ({𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩} → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11768, 93, 1163jaod 1431 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑦 ∈ (0..^𝑁)) → (({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
118117rexlimdva 3135 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → (∃𝑦 ∈ (0..^𝑁)({𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨0, ((𝑦 + 1) mod 𝑁)⟩} ∨ {𝑋, 𝑌} = {⟨0, 𝑦⟩, ⟨1, 𝑦⟩} ∨ {𝑋, 𝑌} = {⟨1, 𝑦⟩, ⟨1, ((𝑦 + 𝐾) mod 𝑁)⟩}) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
11916, 118sylbid 240 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ (𝑋𝑉𝑌𝑉)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
1201193exp 1119 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 0 → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))))
121120com34 91 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ((1st𝑋) = 0 → ({𝑋, 𝑌} ∈ 𝐸 → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))))
1221213imp 1110 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
12313, 122mpd 15 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑌 = ⟨1, (2nd𝑋)⟩ ∨ 𝑌 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  {cpr 4593  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cmin 11411   / cdiv 11841  cn 12187  2c2 12242  3c3 12243  0cn0 12448  cuz 12799  +crp 12957  ..^cfzo 13621  cceil 13759   mod cmo 13837  Vtxcvtx 28929  Edgcedg 28980  USGraphcusgr 29082   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-hash 14302  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-vtx 28931  df-iedg 28932  df-edg 28981  df-umgr 29016  df-usgr 29084  df-gpg 48022
This theorem is referenced by:  gpgedgiov  48046  gpgedg2ov  48047  gpgnbgrvtx0  48055  pgnbgreunbgrlem2lem1  48094  pgnbgreunbgrlem2lem2  48095  pgnbgreunbgrlem2lem3  48096  pgnbgreunbgrlem5lem3  48102
  Copyright terms: Public domain W3C validator