| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmicqusker | Structured version Visualization version GIF version | ||
| Description: The image 𝐻 of a module homomorphism 𝐹 is isomorphic with the quotient module 𝑄 over 𝐹's kernel 𝐾. This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| lmhmqusker.1 | ⊢ 0 = (0g‘𝐻) |
| lmhmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) |
| lmhmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| lmhmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| lmhmqusker.s | ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
| Ref | Expression |
|---|---|
| lmicqusker | ⊢ (𝜑 → 𝑄 ≃𝑚 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmqusker.1 | . . 3 ⊢ 0 = (0g‘𝐻) | |
| 2 | lmhmqusker.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) | |
| 3 | lmhmqusker.k | . . 3 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
| 4 | lmhmqusker.q | . . 3 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
| 5 | lmhmqusker.s | . . 3 ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) | |
| 6 | imaeq2 6007 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝐹 “ 𝑝) = (𝐹 “ 𝑞)) | |
| 7 | 6 | unieqd 4871 | . . . 4 ⊢ (𝑝 = 𝑞 → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑞)) |
| 8 | 7 | cbvmptv 5196 | . . 3 ⊢ (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
| 9 | 1, 2, 3, 4, 5, 8 | lmhmqusker 33354 | . 2 ⊢ (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) ∈ (𝑄 LMIso 𝐻)) |
| 10 | brlmici 20973 | . 2 ⊢ ((𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) ∈ (𝑄 LMIso 𝐻) → 𝑄 ≃𝑚 𝐻) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → 𝑄 ≃𝑚 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 ran crn 5620 “ cima 5622 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 0gc0g 17343 /s cqus 17409 ~QG cqg 19001 LMHom clmhm 20923 LMIso clmim 20924 ≃𝑚 clmic 20925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-gim 19138 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20765 df-lss 20835 df-lmhm 20926 df-lmim 20927 df-lmic 20928 |
| This theorem is referenced by: r1pquslmic 33543 |
| Copyright terms: Public domain | W3C validator |