![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnocni | Structured version Visualization version GIF version |
Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
blocni.8 | ⊢ 𝐶 = (IndMet‘𝑈) |
blocni.d | ⊢ 𝐷 = (IndMet‘𝑊) |
blocni.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
blocni.k | ⊢ 𝐾 = (MetOpen‘𝐷) |
blocni.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
blocni.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
blocni.u | ⊢ 𝑈 ∈ NrmCVec |
blocni.w | ⊢ 𝑊 ∈ NrmCVec |
blocni.l | ⊢ 𝑇 ∈ 𝐿 |
lnocni.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
lnocni | ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blocni.8 | . . 3 ⊢ 𝐶 = (IndMet‘𝑈) | |
2 | blocni.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
3 | blocni.j | . . 3 ⊢ 𝐽 = (MetOpen‘𝐶) | |
4 | blocni.k | . . 3 ⊢ 𝐾 = (MetOpen‘𝐷) | |
5 | blocni.4 | . . 3 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
6 | blocni.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
7 | blocni.u | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
8 | blocni.w | . . 3 ⊢ 𝑊 ∈ NrmCVec | |
9 | blocni.l | . . 3 ⊢ 𝑇 ∈ 𝐿 | |
10 | lnocni.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | blocnilem 30849 | . 2 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ 𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | blocni 30850 | . 2 ⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) |
13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 MetOpencmopn 21381 Cn ccn 23257 CnP ccnp 23258 NrmCVeccnv 30629 BaseSetcba 30631 IndMetcims 30636 LnOp clno 30785 BLnOp cblo 30787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 ax-mulf 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-topgen 17499 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-top 22925 df-topon 22942 df-bases 22978 df-cn 23260 df-cnp 23261 df-grpo 30538 df-gid 30539 df-ginv 30540 df-gdiv 30541 df-ablo 30590 df-vc 30604 df-nv 30637 df-va 30640 df-ba 30641 df-sm 30642 df-0v 30643 df-vs 30644 df-nmcv 30645 df-ims 30646 df-lno 30789 df-nmoo 30790 df-blo 30791 df-0o 30792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |