| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnocni | Structured version Visualization version GIF version | ||
| Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| blocni.8 | ⊢ 𝐶 = (IndMet‘𝑈) |
| blocni.d | ⊢ 𝐷 = (IndMet‘𝑊) |
| blocni.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
| blocni.k | ⊢ 𝐾 = (MetOpen‘𝐷) |
| blocni.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| blocni.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| blocni.u | ⊢ 𝑈 ∈ NrmCVec |
| blocni.w | ⊢ 𝑊 ∈ NrmCVec |
| blocni.l | ⊢ 𝑇 ∈ 𝐿 |
| lnocni.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| Ref | Expression |
|---|---|
| lnocni | ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocni.8 | . . 3 ⊢ 𝐶 = (IndMet‘𝑈) | |
| 2 | blocni.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
| 3 | blocni.j | . . 3 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 4 | blocni.k | . . 3 ⊢ 𝐾 = (MetOpen‘𝐷) | |
| 5 | blocni.4 | . . 3 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 6 | blocni.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 7 | blocni.u | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
| 8 | blocni.w | . . 3 ⊢ 𝑊 ∈ NrmCVec | |
| 9 | blocni.l | . . 3 ⊢ 𝑇 ∈ 𝐿 | |
| 10 | lnocni.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | blocnilem 30739 | . 2 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ 𝐵) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | blocni 30740 | . 2 ⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 MetOpencmopn 21260 Cn ccn 23117 CnP ccnp 23118 NrmCVeccnv 30519 BaseSetcba 30521 IndMetcims 30526 LnOp clno 30675 BLnOp cblo 30677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-bases 22839 df-cn 23120 df-cnp 23121 df-grpo 30428 df-gid 30429 df-ginv 30430 df-gdiv 30431 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-vs 30534 df-nmcv 30535 df-ims 30536 df-lno 30679 df-nmoo 30680 df-blo 30681 df-0o 30682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |