MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matecld Structured version   Visualization version   GIF version

Theorem matecld 22279
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
matecl.a 𝐴 = (𝑁 Mat 𝑅)
matecl.k 𝐾 = (Base‘𝑅)
matecld.b 𝐵 = (Base‘𝐴)
matecld.i (𝜑𝐼𝑁)
matecld.j (𝜑𝐽𝑁)
matecld.m (𝜑𝑀𝐵)
Assertion
Ref Expression
matecld (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾)

Proof of Theorem matecld
StepHypRef Expression
1 matecld.i . 2 (𝜑𝐼𝑁)
2 matecld.j . 2 (𝜑𝐽𝑁)
3 matecld.m . . 3 (𝜑𝑀𝐵)
4 matecld.b . . 3 𝐵 = (Base‘𝐴)
53, 4eleqtrdi 2837 . 2 (𝜑𝑀 ∈ (Base‘𝐴))
6 matecl.a . . 3 𝐴 = (𝑁 Mat 𝑅)
7 matecl.k . . 3 𝐾 = (Base‘𝑅)
86, 7matecl 22278 . 2 ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾)
91, 2, 5, 8syl3anc 1368 1 (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6536  (class class class)co 7404  Basecbs 17151   Mat cmat 22258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-prds 17400  df-pws 17402  df-sra 21019  df-rgmod 21020  df-dsmm 21623  df-frlm 21638  df-mat 22259
This theorem is referenced by:  mat1mhm  22337  dmatmulcl  22353  dmatcrng  22355  scmatscm  22366  scmatcrng  22374  maduf  22494  pmatcoe1fsupp  22554  cpmatel2  22566  cpmatmcllem  22571  mat2pmatf1  22582  mat2pmatghm  22583  mat2pmatmul  22584  mat2pmatlin  22588  m2cpm  22594  cpm2mf  22605  m2cpminvid  22606  m2cpminvid2lem  22607  m2cpminvid2  22608  m2cpmfo  22609  decpmatcl  22620  decpmatmullem  22624  decpmatmul  22625  pmatcollpw1lem1  22627  pmatcollpw1lem2  22628  pmatcollpw1  22629  pmatcollpw2  22631  monmatcollpw  22632  pmatcollpwlem  22633  pmatcollpw  22634  pmatcollpw3lem  22636  pmatcollpwscmatlem2  22643  pm2mpf1  22652  mptcoe1matfsupp  22655  mply1topmatcl  22658  mp2pm2mplem2  22660  mp2pm2mplem4  22662  mdetpmtr1  33333  mdetpmtr2  33334  mdetpmtr12  33335  madjusmdetlem1  33337  madjusmdetlem3  33339  mdetlap  33342
  Copyright terms: Public domain W3C validator