![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matecld | Structured version Visualization version GIF version |
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
matecl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matecl.k | ⊢ 𝐾 = (Base‘𝑅) |
matecld.b | ⊢ 𝐵 = (Base‘𝐴) |
matecld.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
matecld.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
matecld.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
Ref | Expression |
---|---|
matecld | ⊢ (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matecld.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
2 | matecld.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
3 | matecld.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
4 | matecld.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 3, 4 | syl6eleq 2889 | . 2 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐴)) |
6 | matecl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | matecl.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
8 | 6, 7 | matecl 20555 | . 2 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
9 | 1, 2, 5, 8 | syl3anc 1491 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 Mat cmat 20537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-ot 4378 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-map 8098 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-sup 8591 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-sca 16282 df-vsca 16283 df-ip 16284 df-tset 16285 df-ple 16286 df-ds 16288 df-hom 16290 df-cco 16291 df-0g 16416 df-prds 16422 df-pws 16424 df-sra 19494 df-rgmod 19495 df-dsmm 20400 df-frlm 20415 df-mat 20538 |
This theorem is referenced by: mat1mhm 20615 dmatmulcl 20631 dmatcrng 20633 scmatscm 20644 scmatcrng 20652 maduf 20772 pmatcoe1fsupp 20833 cpmatel2 20845 cpmatmcllem 20850 mat2pmatf1 20861 mat2pmatghm 20862 mat2pmatmul 20863 mat2pmatlin 20867 m2cpm 20873 cpm2mf 20884 m2cpminvid 20885 m2cpminvid2lem 20886 m2cpminvid2 20887 m2cpmfo 20888 decpmatcl 20899 decpmatmullem 20903 decpmatmul 20904 pmatcollpw1lem1 20906 pmatcollpw1lem2 20907 pmatcollpw1 20908 pmatcollpw2 20910 monmatcollpw 20911 pmatcollpwlem 20912 pmatcollpw 20913 pmatcollpw3lem 20915 pmatcollpwscmatlem2 20922 pm2mpf1 20931 mptcoe1matfsupp 20934 mply1topmatcl 20937 mp2pm2mplem2 20939 mp2pm2mplem4 20941 mdetpmtr1 30404 mdetpmtr2 30405 mdetpmtr12 30406 madjusmdetlem1 30408 madjusmdetlem3 30410 mdetlap 30413 |
Copyright terms: Public domain | W3C validator |