![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cxp111d | Structured version Visualization version GIF version |
Description: General condition for complex exponentiation to be one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.) |
Ref | Expression |
---|---|
cxp111d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxp111d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
cxp111d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
cxp111d.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cxp111d.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
cxp111d.3 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
cxp111d | ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp111d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cxp111d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | cxp111d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | cxpefd 26666 | . . 3 ⊢ (𝜑 → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
5 | cxp111d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
6 | cxp111d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
7 | 5, 6, 3 | cxpefd 26666 | . . 3 ⊢ (𝜑 → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
8 | 4, 7 | eqeq12d 2744 | . 2 ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) = (exp‘(𝐶 · (log‘𝐵))))) |
9 | 1, 2 | logcld 26524 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
10 | 3, 9 | mulcld 11272 | . . 3 ⊢ (𝜑 → (𝐶 · (log‘𝐴)) ∈ ℂ) |
11 | 5, 6 | logcld 26524 | . . . 4 ⊢ (𝜑 → (log‘𝐵) ∈ ℂ) |
12 | 3, 11 | mulcld 11272 | . . 3 ⊢ (𝜑 → (𝐶 · (log‘𝐵)) ∈ ℂ) |
13 | 10, 12 | ef11d 41941 | . 2 ⊢ (𝜑 → ((exp‘(𝐶 · (log‘𝐴))) = (exp‘(𝐶 · (log‘𝐵))) ↔ ∃𝑛 ∈ ℤ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) |
14 | 10 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝐶 · (log‘𝐴)) ∈ ℂ) |
15 | 12 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝐶 · (log‘𝐵)) ∈ ℂ) |
16 | ax-icn 11205 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
17 | 2cn 12325 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
18 | picn 26414 | . . . . . . . . . 10 ⊢ π ∈ ℂ | |
19 | 17, 18 | mulcli 11259 | . . . . . . . . 9 ⊢ (2 · π) ∈ ℂ |
20 | 16, 19 | mulcli 11259 | . . . . . . . 8 ⊢ (i · (2 · π)) ∈ ℂ |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (i · (2 · π)) ∈ ℂ) |
22 | zcn 12601 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
23 | 22 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ) |
24 | 21, 23 | mulcld 11272 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((i · (2 · π)) · 𝑛) ∈ ℂ) |
25 | 15, 24 | addcld 11271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ∈ ℂ) |
26 | 3 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝐶 ∈ ℂ) |
27 | cxp111d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ≠ 0) | |
28 | 27 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝐶 ≠ 0) |
29 | div11 11938 | . . . . 5 ⊢ (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) | |
30 | 14, 25, 26, 28, 29 | syl112anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) |
31 | 9, 3, 27 | divcan3d 12033 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · (log‘𝐴)) / 𝐶) = (log‘𝐴)) |
32 | 31 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐴)) / 𝐶) = (log‘𝐴)) |
33 | 15, 24, 26, 28 | divdird 12066 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) = (((𝐶 · (log‘𝐵)) / 𝐶) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
34 | 11, 3, 27 | divcan3d 12033 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 · (log‘𝐵)) / 𝐶) = (log‘𝐵)) |
35 | 34 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐵)) / 𝐶) = (log‘𝐵)) |
36 | 35 | oveq1d 7441 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) / 𝐶) + (((i · (2 · π)) · 𝑛) / 𝐶)) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
37 | 33, 36 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
38 | 32, 37 | eqeq12d 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
39 | 30, 38 | bitr3d 280 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ↔ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
40 | 39 | rexbidva 3174 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℤ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
41 | 8, 13, 40 | 3bitrd 304 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 ici 11148 + caddc 11149 · cmul 11151 / cdiv 11909 2c2 12305 ℤcz 12596 expce 16045 πcpi 16050 logclog 26508 ↑𝑐ccxp 26509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-fac 14273 df-bc 14302 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-ef 16051 df-sin 16053 df-cos 16054 df-pi 16056 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-mulg 19031 df-cntz 19275 df-cmn 19744 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-ntr 22944 df-cls 22945 df-nei 23022 df-lp 23060 df-perf 23061 df-cn 23151 df-cnp 23152 df-haus 23239 df-tx 23486 df-hmeo 23679 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-xms 24246 df-ms 24247 df-tms 24248 df-cncf 24818 df-limc 25815 df-dv 25816 df-log 26510 df-cxp 26511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |