| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cxp111d | Structured version Visualization version GIF version | ||
| Description: General condition for complex exponentiation to be one-to-one with respect to the first argument. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| cxp111d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxp111d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| cxp111d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| cxp111d.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cxp111d.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| cxp111d.3 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| cxp111d | ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp111d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxp111d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | cxp111d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 1, 2, 3 | cxpefd 26649 | . . 3 ⊢ (𝜑 → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
| 5 | cxp111d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 6 | cxp111d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 7 | 5, 6, 3 | cxpefd 26649 | . . 3 ⊢ (𝜑 → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
| 8 | 4, 7 | eqeq12d 2749 | . 2 ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) = (exp‘(𝐶 · (log‘𝐵))))) |
| 9 | 1, 2 | logcld 26507 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
| 10 | 3, 9 | mulcld 11139 | . . 3 ⊢ (𝜑 → (𝐶 · (log‘𝐴)) ∈ ℂ) |
| 11 | 5, 6 | logcld 26507 | . . . 4 ⊢ (𝜑 → (log‘𝐵) ∈ ℂ) |
| 12 | 3, 11 | mulcld 11139 | . . 3 ⊢ (𝜑 → (𝐶 · (log‘𝐵)) ∈ ℂ) |
| 13 | 10, 12 | ef11d 42457 | . 2 ⊢ (𝜑 → ((exp‘(𝐶 · (log‘𝐴))) = (exp‘(𝐶 · (log‘𝐵))) ↔ ∃𝑛 ∈ ℤ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) |
| 14 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝐶 · (log‘𝐴)) ∈ ℂ) |
| 15 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝐶 · (log‘𝐵)) ∈ ℂ) |
| 16 | ax-icn 11072 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 17 | 2cn 12207 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 18 | picn 26395 | . . . . . . . . . 10 ⊢ π ∈ ℂ | |
| 19 | 17, 18 | mulcli 11126 | . . . . . . . . 9 ⊢ (2 · π) ∈ ℂ |
| 20 | 16, 19 | mulcli 11126 | . . . . . . . 8 ⊢ (i · (2 · π)) ∈ ℂ |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (i · (2 · π)) ∈ ℂ) |
| 22 | zcn 12480 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ) |
| 24 | 21, 23 | mulcld 11139 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((i · (2 · π)) · 𝑛) ∈ ℂ) |
| 25 | 15, 24 | addcld 11138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ∈ ℂ) |
| 26 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝐶 ∈ ℂ) |
| 27 | cxp111d.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝐶 ≠ 0) |
| 29 | div11 11811 | . . . . 5 ⊢ (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) | |
| 30 | 14, 25, 26, 28, 29 | syl112anc 1376 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)))) |
| 31 | 9, 3, 27 | divcan3d 11909 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · (log‘𝐴)) / 𝐶) = (log‘𝐴)) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐴)) / 𝐶) = (log‘𝐴)) |
| 33 | 15, 24, 26, 28 | divdird 11942 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) = (((𝐶 · (log‘𝐵)) / 𝐶) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
| 34 | 11, 3, 27 | divcan3d 11909 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 · (log‘𝐵)) / 𝐶) = (log‘𝐵)) |
| 35 | 34 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐵)) / 𝐶) = (log‘𝐵)) |
| 36 | 35 | oveq1d 7367 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) / 𝐶) + (((i · (2 · π)) · 𝑛) / 𝐶)) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
| 37 | 33, 36 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶))) |
| 38 | 32, 37 | eqeq12d 2749 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (((𝐶 · (log‘𝐴)) / 𝐶) = (((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) / 𝐶) ↔ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
| 39 | 30, 38 | bitr3d 281 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → ((𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ↔ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
| 40 | 39 | rexbidva 3155 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℤ (𝐶 · (log‘𝐴)) = ((𝐶 · (log‘𝐵)) + ((i · (2 · π)) · 𝑛)) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
| 41 | 8, 13, 40 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶) ↔ ∃𝑛 ∈ ℤ (log‘𝐴) = ((log‘𝐵) + (((i · (2 · π)) · 𝑛) / 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 ici 11015 + caddc 11016 · cmul 11018 / cdiv 11781 2c2 12187 ℤcz 12475 expce 15970 πcpi 15975 logclog 26491 ↑𝑐ccxp 26492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-cxp 26494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |