![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nicomachus | Structured version Visualization version GIF version |
Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.) |
Ref | Expression |
---|---|
nicomachus | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 14024 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
2 | nn0cn 12563 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
4 | 3 | sqcld 14194 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ) |
5 | 4, 3 | subcld 11647 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ) |
6 | 2cnd 12371 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ) | |
7 | elfznn 13613 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
8 | 7 | nncnd 12309 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
10 | 6, 9 | mulcld 11310 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ) |
11 | 1cnd 11285 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ) | |
12 | 10, 11 | subcld 11647 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ) |
13 | 1, 5, 12 | fsumadd 15788 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1))) |
14 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
15 | 2 | sqcld 14194 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ) |
16 | 15, 2 | subcld 11647 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ) |
17 | 14, 16 | fz1sumconst 42297 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁))) |
18 | 2, 15, 2 | subdid 11746 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁))) |
19 | df-3 12357 | . . . . . . . 8 ⊢ 3 = (2 + 1) | |
20 | 19 | oveq2i 7459 | . . . . . . 7 ⊢ (𝑁↑3) = (𝑁↑(2 + 1)) |
21 | 2nn0 12570 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
23 | 2, 22 | expp1d 14197 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁)) |
24 | 20, 23 | eqtrid 2792 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁)) |
25 | 15, 2 | mulcomd 11311 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2))) |
26 | 24, 25 | eqtr2d 2781 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3)) |
27 | 2 | sqvald 14193 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁)) |
28 | 27 | eqcomd 2746 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2)) |
29 | 26, 28 | oveq12d 7466 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2))) |
30 | 17, 18, 29 | 3eqtrd 2784 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2))) |
31 | oddnumth 42299 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2)) | |
32 | 30, 31 | oveq12d 7466 | . 2 ⊢ (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2))) |
33 | 3nn0 12571 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℕ0) |
35 | 2, 34 | expcld 14196 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ) |
36 | 35, 15 | npcand 11651 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3)) |
37 | 13, 32, 36 | 3eqtrd 2784 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 2c2 12348 3c3 12349 ℕ0cn0 12553 ...cfz 13567 ↑cexp 14112 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: sumcubes 42301 |
Copyright terms: Public domain | W3C validator |