Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nicomachus Structured version   Visualization version   GIF version

Theorem nicomachus 42273
Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.)
Assertion
Ref Expression
nicomachus (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Distinct variable group:   𝑘,𝑁

Proof of Theorem nicomachus
StepHypRef Expression
1 fzfid 13914 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
2 nn0cn 12428 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
32adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
43sqcld 14085 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ)
54, 3subcld 11509 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ)
6 2cnd 12240 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ)
7 elfznn 13490 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
87nncnd 12178 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
98adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
106, 9mulcld 11170 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ)
11 1cnd 11145 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ)
1210, 11subcld 11509 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ)
131, 5, 12fsumadd 15682 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)))
14 id 22 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
152sqcld 14085 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ)
1615, 2subcld 11509 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ)
1714, 16fz1sumconst 42270 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁)))
182, 15, 2subdid 11610 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)))
19 df-3 12226 . . . . . . . 8 3 = (2 + 1)
2019oveq2i 7380 . . . . . . 7 (𝑁↑3) = (𝑁↑(2 + 1))
21 2nn0 12435 . . . . . . . . 9 2 ∈ ℕ0
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
232, 22expp1d 14088 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁))
2420, 23eqtrid 2776 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁))
2515, 2mulcomd 11171 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2)))
2624, 25eqtr2d 2765 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3))
272sqvald 14084 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁))
2827eqcomd 2735 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2))
2926, 28oveq12d 7387 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2)))
3017, 18, 293eqtrd 2768 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2)))
31 oddnumth 42272 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2))
3230, 31oveq12d 7387 . 2 (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)))
33 3nn0 12436 . . . . 5 3 ∈ ℕ0
3433a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 3 ∈ ℕ0)
352, 34expcld 14087 . . 3 (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ)
3635, 15npcand 11513 . 2 (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3))
3713, 32, 363eqtrd 2768 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  3c3 12218  0cn0 12418  ...cfz 13444  cexp 14002  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by:  sumcubes  42274
  Copyright terms: Public domain W3C validator