| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nicomachus | Structured version Visualization version GIF version | ||
| Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| nicomachus | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13887 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 2 | nn0cn 12402 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
| 4 | 3 | sqcld 14058 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ) |
| 5 | 4, 3 | subcld 11483 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ) |
| 6 | 2cnd 12214 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ) | |
| 7 | elfznn 13460 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 8 | 7 | nncnd 12152 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
| 10 | 6, 9 | mulcld 11143 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ) |
| 11 | 1cnd 11118 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ) | |
| 12 | 10, 11 | subcld 11483 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ) |
| 13 | 1, 5, 12 | fsumadd 15654 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1))) |
| 14 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 15 | 2 | sqcld 14058 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ) |
| 16 | 15, 2 | subcld 11483 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ) |
| 17 | 14, 16 | fz1sumconst 42479 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁))) |
| 18 | 2, 15, 2 | subdid 11584 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁))) |
| 19 | df-3 12200 | . . . . . . . 8 ⊢ 3 = (2 + 1) | |
| 20 | 19 | oveq2i 7366 | . . . . . . 7 ⊢ (𝑁↑3) = (𝑁↑(2 + 1)) |
| 21 | 2nn0 12409 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
| 23 | 2, 22 | expp1d 14061 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁)) |
| 24 | 20, 23 | eqtrid 2780 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁)) |
| 25 | 15, 2 | mulcomd 11144 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2))) |
| 26 | 24, 25 | eqtr2d 2769 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3)) |
| 27 | 2 | sqvald 14057 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁)) |
| 28 | 27 | eqcomd 2739 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2)) |
| 29 | 26, 28 | oveq12d 7373 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2))) |
| 30 | 17, 18, 29 | 3eqtrd 2772 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2))) |
| 31 | oddnumth 42481 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2)) | |
| 32 | 30, 31 | oveq12d 7373 | . 2 ⊢ (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2))) |
| 33 | 3nn0 12410 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℕ0) |
| 35 | 2, 34 | expcld 14060 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ) |
| 36 | 35, 15 | npcand 11487 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3)) |
| 37 | 13, 32, 36 | 3eqtrd 2772 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 1c1 11018 + caddc 11020 · cmul 11022 − cmin 11355 2c2 12191 3c3 12192 ℕ0cn0 12392 ...cfz 13414 ↑cexp 13975 Σcsu 15600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 |
| This theorem is referenced by: sumcubes 42483 |
| Copyright terms: Public domain | W3C validator |