Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nicomachus Structured version   Visualization version   GIF version

Theorem nicomachus 42307
Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.)
Assertion
Ref Expression
nicomachus (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Distinct variable group:   𝑘,𝑁

Proof of Theorem nicomachus
StepHypRef Expression
1 fzfid 13945 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
2 nn0cn 12459 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
32adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
43sqcld 14116 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ)
54, 3subcld 11540 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ)
6 2cnd 12271 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ)
7 elfznn 13521 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
87nncnd 12209 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
98adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
106, 9mulcld 11201 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ)
11 1cnd 11176 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ)
1210, 11subcld 11540 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ)
131, 5, 12fsumadd 15713 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)))
14 id 22 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
152sqcld 14116 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ)
1615, 2subcld 11540 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ)
1714, 16fz1sumconst 42304 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁)))
182, 15, 2subdid 11641 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)))
19 df-3 12257 . . . . . . . 8 3 = (2 + 1)
2019oveq2i 7401 . . . . . . 7 (𝑁↑3) = (𝑁↑(2 + 1))
21 2nn0 12466 . . . . . . . . 9 2 ∈ ℕ0
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
232, 22expp1d 14119 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁))
2420, 23eqtrid 2777 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁))
2515, 2mulcomd 11202 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2)))
2624, 25eqtr2d 2766 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3))
272sqvald 14115 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁))
2827eqcomd 2736 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2))
2926, 28oveq12d 7408 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2)))
3017, 18, 293eqtrd 2769 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2)))
31 oddnumth 42306 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2))
3230, 31oveq12d 7408 . 2 (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)))
33 3nn0 12467 . . . . 5 3 ∈ ℕ0
3433a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 3 ∈ ℕ0)
352, 34expcld 14118 . . 3 (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ)
3635, 15npcand 11544 . 2 (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3))
3713, 32, 363eqtrd 2769 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  2c2 12248  3c3 12249  0cn0 12449  ...cfz 13475  cexp 14033  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by:  sumcubes  42308
  Copyright terms: Public domain W3C validator