Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nicomachus Structured version   Visualization version   GIF version

Theorem nicomachus 41872
Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.)
Assertion
Ref Expression
nicomachus (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Distinct variable group:   𝑘,𝑁

Proof of Theorem nicomachus
StepHypRef Expression
1 fzfid 13970 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
2 nn0cn 12512 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
32adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
43sqcld 14140 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ)
54, 3subcld 11601 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ)
6 2cnd 12320 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ)
7 elfznn 13562 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
87nncnd 12258 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
98adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
106, 9mulcld 11264 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ)
11 1cnd 11239 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ)
1210, 11subcld 11601 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ)
131, 5, 12fsumadd 15718 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)))
14 id 22 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
152sqcld 14140 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ)
1615, 2subcld 11601 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ)
1714, 16fz1sumconst 41869 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁)))
182, 15, 2subdid 11700 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)))
19 df-3 12306 . . . . . . . 8 3 = (2 + 1)
2019oveq2i 7431 . . . . . . 7 (𝑁↑3) = (𝑁↑(2 + 1))
21 2nn0 12519 . . . . . . . . 9 2 ∈ ℕ0
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
232, 22expp1d 14143 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁))
2420, 23eqtrid 2780 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁))
2515, 2mulcomd 11265 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2)))
2624, 25eqtr2d 2769 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3))
272sqvald 14139 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁))
2827eqcomd 2734 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2))
2926, 28oveq12d 7438 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2)))
3017, 18, 293eqtrd 2772 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2)))
31 oddnumth 41871 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2))
3230, 31oveq12d 7438 . 2 (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)))
33 3nn0 12520 . . . . 5 3 ∈ ℕ0
3433a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 3 ∈ ℕ0)
352, 34expcld 14142 . . 3 (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ)
3635, 15npcand 11605 . 2 (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3))
3713, 32, 363eqtrd 2772 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  (class class class)co 7420  cc 11136  1c1 11139   + caddc 11141   · cmul 11143  cmin 11474  2c2 12297  3c3 12298  0cn0 12502  ...cfz 13516  cexp 14058  Σcsu 15664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665
This theorem is referenced by:  sumcubes  41873
  Copyright terms: Public domain W3C validator