| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nicomachus | Structured version Visualization version GIF version | ||
| Description: Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| nicomachus | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13938 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 2 | nn0cn 12452 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
| 4 | 3 | sqcld 14109 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (𝑁↑2) ∈ ℂ) |
| 5 | 4, 3 | subcld 11533 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁↑2) − 𝑁) ∈ ℂ) |
| 6 | 2cnd 12264 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 2 ∈ ℂ) | |
| 7 | elfznn 13514 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 8 | 7 | nncnd 12202 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
| 10 | 6, 9 | mulcld 11194 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → (2 · 𝑘) ∈ ℂ) |
| 11 | 1cnd 11169 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℂ) | |
| 12 | 10, 11 | subcld 11533 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → ((2 · 𝑘) − 1) ∈ ℂ) |
| 13 | 1, 5, 12 | fsumadd 15706 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1))) |
| 14 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 15 | 2 | sqcld 14109 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) ∈ ℂ) |
| 16 | 15, 2 | subcld 11533 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) − 𝑁) ∈ ℂ) |
| 17 | 14, 16 | fz1sumconst 42297 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = (𝑁 · ((𝑁↑2) − 𝑁))) |
| 18 | 2, 15, 2 | subdid 11634 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · ((𝑁↑2) − 𝑁)) = ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁))) |
| 19 | df-3 12250 | . . . . . . . 8 ⊢ 3 = (2 + 1) | |
| 20 | 19 | oveq2i 7398 | . . . . . . 7 ⊢ (𝑁↑3) = (𝑁↑(2 + 1)) |
| 21 | 2nn0 12459 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
| 23 | 2, 22 | expp1d 14112 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑(2 + 1)) = ((𝑁↑2) · 𝑁)) |
| 24 | 20, 23 | eqtrid 2776 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) = ((𝑁↑2) · 𝑁)) |
| 25 | 15, 2 | mulcomd 11195 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁↑2) · 𝑁) = (𝑁 · (𝑁↑2))) |
| 26 | 24, 25 | eqtr2d 2765 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · (𝑁↑2)) = (𝑁↑3)) |
| 27 | 2 | sqvald 14108 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑2) = (𝑁 · 𝑁)) |
| 28 | 27 | eqcomd 2735 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 · 𝑁) = (𝑁↑2)) |
| 29 | 26, 28 | oveq12d 7405 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 · (𝑁↑2)) − (𝑁 · 𝑁)) = ((𝑁↑3) − (𝑁↑2))) |
| 30 | 17, 18, 29 | 3eqtrd 2768 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) = ((𝑁↑3) − (𝑁↑2))) |
| 31 | oddnumth 42299 | . . 3 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2)) | |
| 32 | 30, 31 | oveq12d 7405 | . 2 ⊢ (𝑁 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑁)((𝑁↑2) − 𝑁) + Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1)) = (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2))) |
| 33 | 3nn0 12460 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℕ0) |
| 35 | 2, 34 | expcld 14111 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁↑3) ∈ ℂ) |
| 36 | 35, 15 | npcand 11537 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁↑3) − (𝑁↑2)) + (𝑁↑2)) = (𝑁↑3)) |
| 37 | 13, 32, 36 | 3eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 2c2 12241 3c3 12242 ℕ0cn0 12442 ...cfz 13468 ↑cexp 14026 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: sumcubes 42301 |
| Copyright terms: Public domain | W3C validator |