Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsmslem1 | Structured version Visualization version GIF version |
Description: Lemma for prdsms 23687. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsxms.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
prdsxms.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
prdsxms.d | ⊢ 𝐷 = (dist‘𝑌) |
prdsxms.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsms.r | ⊢ (𝜑 → 𝑅:𝐼⟶MetSp) |
Ref | Expression |
---|---|
prdsmslem1 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
3 | eqid 2738 | . . 3 ⊢ (Base‘(𝑅‘𝑘)) = (Base‘(𝑅‘𝑘)) | |
4 | eqid 2738 | . . 3 ⊢ ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) = ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) | |
5 | eqid 2738 | . . 3 ⊢ (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) | |
6 | prdsxms.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
7 | prdsxms.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
8 | prdsms.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶MetSp) | |
9 | 8 | ffvelrnda 6961 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ MetSp) |
10 | 3, 4 | msmet 23610 | . . . 4 ⊢ ((𝑅‘𝑘) ∈ MetSp → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (Met‘(Base‘(𝑅‘𝑘)))) |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((dist‘(𝑅‘𝑘)) ↾ ((Base‘(𝑅‘𝑘)) × (Base‘(𝑅‘𝑘)))) ∈ (Met‘(Base‘(𝑅‘𝑘)))) |
12 | 1, 2, 3, 4, 5, 6, 7, 9, 11 | prdsmet 23523 | . 2 ⊢ (𝜑 → (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) ∈ (Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
13 | prdsxms.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
14 | prdsxms.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
15 | 8 | feqmptd 6837 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
16 | 15 | oveq2d 7291 | . . . . 5 ⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
17 | 14, 16 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
18 | 17 | fveq2d 6778 | . . 3 ⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
19 | 13, 18 | eqtrid 2790 | . 2 ⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
20 | prdsxms.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
21 | 17 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
22 | 20, 21 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
23 | 22 | fveq2d 6778 | . 2 ⊢ (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))))) |
24 | 12, 19, 23 | 3eltr4d 2854 | 1 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 × cxp 5587 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 distcds 16971 Xscprds 17156 Metcmet 20583 MetSpcms 23471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-topgen 17154 df-prds 17158 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-xms 23473 df-ms 23474 |
This theorem is referenced by: prdsms 23687 |
Copyright terms: Public domain | W3C validator |