Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7 Structured version   Visualization version   GIF version

Theorem aks6d1c7 42197
Description: 𝑁 is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7.2 𝑃 = (chr‘𝐾)
aks6d1c7.3 (𝜑𝐾 ∈ Field)
aks6d1c7.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7.7 (𝜑𝑃𝑁)
aks6d1c7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7.11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7.12 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Assertion
Ref Expression
aks6d1c7 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑒,𝑓,𝑦   𝑥,𝐴,𝑦   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑥,𝐾   𝑀,𝑎   𝑀,𝑏   𝑥,𝑀,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑎   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝜑,𝑏   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓,𝑏)   𝑅(𝑏)   𝑀(𝑒,𝑓)

Proof of Theorem aks6d1c7
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑟)
2 aks6d1c7.7 . . . . . . . . . . . 12 (𝜑𝑃𝑁)
32ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃𝑁)
4 breq1 5122 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠𝑁𝑃𝑁))
5 eqeq1 2739 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠 = 𝑟𝑃 = 𝑟))
64, 5bibi12d 345 . . . . . . . . . . . . 13 (𝑠 = 𝑃 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑃𝑁𝑃 = 𝑟)))
7 nfv 1914 . . . . . . . . . . . . . . . 16 𝑠(𝑝𝑁𝑝 = 𝑟)
8 nfv 1914 . . . . . . . . . . . . . . . 16 𝑝(𝑠𝑁𝑠 = 𝑟)
9 breq1 5122 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝𝑁𝑠𝑁))
10 equequ1 2024 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝 = 𝑟𝑠 = 𝑟))
119, 10bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑠 → ((𝑝𝑁𝑝 = 𝑟) ↔ (𝑠𝑁𝑠 = 𝑟)))
127, 8, 11cbvralw 3286 . . . . . . . . . . . . . . 15 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) ↔ ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1312biimpi 216 . . . . . . . . . . . . . 14 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1413adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
15 aks6d1c7.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 ∈ ℙ)
176, 14, 16rspcdva 3602 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
1817biimpd 229 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
193, 18mpd 15 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 = 𝑟)
2019ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑟)
2120eqcomd 2741 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑟 = 𝑃)
221, 21eqtrd 2770 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑃)
2322oveq1d 7420 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑃 pCnt 𝑁))
24 aks6d1c7.6 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘3))
25 eluzelz 12862 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
27 0red 11238 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
28 3re 12320 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ∈ ℝ)
3026zred 12697 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
31 3pos 12345 . . . . . . . . . . . . . . . . . . . 20 0 < 3
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
33 eluzle 12865 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3424, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 𝑁)
3527, 29, 30, 32, 34ltletrd 11395 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑁)
3626, 35jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
37 elnnz 12598 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
3836, 37sylibr 234 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
39 pcelnn 16890 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
4015, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
412, 40mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
4241nncnd 12256 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℂ)
4342mulridd 11252 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = (𝑃 pCnt 𝑁))
4443eqcomd 2741 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · 1))
45 1nn0 12517 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
47 pcidlem 16892 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (𝑃 pCnt (𝑃↑1)) = 1)
4815, 46, 47syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
4948eqcomd 2741 . . . . . . . . . . . . 13 (𝜑 → 1 = (𝑃 pCnt (𝑃↑1)))
50 prmnn 16693 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5115, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
5251nncnd 12256 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5352exp1d 14159 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
5453oveq2d 7421 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
5549, 54eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → 1 = (𝑃 pCnt 𝑃))
5655oveq2d 7421 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5744, 56eqtrd 2770 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5857adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5958ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
6016ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
61 nnq 12978 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
6251, 61syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℚ)
6351nnne0d 12290 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
6462, 63jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6564adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℙ) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6665ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6741nnzd 12615 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
6968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℤ)
7069adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℤ)
72 pcexp 16879 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7360, 66, 71, 72syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7473eqcomd 2741 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7559, 74eqtrd 2770 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7622eqcomd 2741 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑞)
7776oveq1d 7420 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7875, 77eqtrd 2770 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7923, 78eqtrd 2770 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
80 breq1 5122 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠𝑁𝑞𝑁))
81 equequ1 2024 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠 = 𝑟𝑞 = 𝑟))
8280, 81bibi12d 345 . . . . . . . . . . 11 (𝑠 = 𝑞 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑞𝑁𝑞 = 𝑟)))
8314adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
84 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
8582, 83, 84rspcdva 3602 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞𝑁𝑞 = 𝑟))
8685bicomd 223 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 = 𝑟𝑞𝑁))
8786notbid 318 . . . . . . . 8 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞 = 𝑟 ↔ ¬ 𝑞𝑁))
8887biimpa 476 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑁)
8984adantr 480 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ ℙ)
9038adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → 𝑁 ∈ ℕ)
9190ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑁 ∈ ℕ)
92 pceq0 16891 . . . . . . . 8 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9389, 91, 92syl2anc 584 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9488, 93mpbird 257 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = 0)
95 neqne 2940 . . . . . . . . . . . . 13 𝑞 = 𝑟𝑞𝑟)
9695adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑟)
973adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃𝑁)
9816adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 ∈ ℙ)
996, 83, 98rspcdva 3602 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10099biimpd 229 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10197, 100mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 = 𝑟)
102101adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 = 𝑟)
103102eqcomd 2741 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑟 = 𝑃)
10496, 103neeqtrd 3001 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑃)
105104neneqd 2937 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 = 𝑃)
106 prmuz2 16715 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
107106adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘2))
108107adantr 480 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ (ℤ‘2))
10916ad2antrr 726 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
110 dvdsprm 16722 . . . . . . . . . . 11 ((𝑞 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑞𝑃𝑞 = 𝑃))
111108, 109, 110syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞𝑃𝑞 = 𝑃))
112105, 111mtbird 325 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑃)
11351ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℕ)
114113nnzd 12615 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℤ)
11541adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
116115adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℕ)
117116adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
118117adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ)
119 prmdvdsexp 16734 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
12089, 114, 118, 119syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
121112, 120mtbird 325 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)))
122109, 91pccld 16870 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ0)
123113, 122nnexpcld 14263 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
124 pceq0 16891 . . . . . . . . 9 ((𝑞 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
12589, 123, 124syl2anc 584 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
126121, 125mpbird 257 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0)
127126eqcomd 2741 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 0 = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12894, 127eqtrd 2770 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12979, 128pm2.61dan 812 . . . 4 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
130129ralrimiva 3132 . . 3 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
131 aks6d1c7.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
132 aks6d1c7.2 . . . . 5 𝑃 = (chr‘𝐾)
133 aks6d1c7.3 . . . . 5 (𝜑𝐾 ∈ Field)
134 aks6d1c7.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
135 aks6d1c7.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
136 aks6d1c7.9 . . . . 5 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
137 aks6d1c7.10 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
138 aks6d1c7.11 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
139 aks6d1c7.12 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
140 aks6d1c7.13 . . . . 5 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
141 aks6d1c7.14 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
142131, 132, 133, 15, 134, 24, 2, 135, 136, 137, 138, 139, 140, 141aks6d1c7lem4 42196 . . . 4 (𝜑 → ∃!𝑝 ∈ ℙ 𝑝𝑁)
143 reu6 3709 . . . 4 (∃!𝑝 ∈ ℙ 𝑝𝑁 ↔ ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
144142, 143sylib 218 . . 3 (𝜑 → ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
145130, 144r19.29a 3148 . 2 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
14638nnnn0d 12562 . . 3 (𝜑𝑁 ∈ ℕ0)
14751nnnn0d 12562 . . . 4 (𝜑𝑃 ∈ ℕ0)
14815, 38pccld 16870 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
149147, 148nn0expcld 14264 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0)
150 pc11 16900 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0) → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
151146, 149, 150syl2anc 584 . 2 (𝜑 → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
152145, 151mpbird 257 1 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357   class class class wbr 5119  {copab 5181  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  cn 12240  2c2 12295  3c3 12296  0cn0 12501  cz 12588  cuz 12852  cq 12964  ...cfz 13524  cfl 13807  cexp 14079  csqrt 15252  cdvds 16272   gcd cgcd 16513  cprime 16690  odcodz 16782  ϕcphi 16783   pCnt cpc 16856  Basecbs 17228  +gcplusg 17271  .gcmg 19050  mulGrpcmgp 20100   RingIso crs 20430  Fieldcfield 20690  ℤRHomczrh 21460  chrcchr 21462  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252   logb clogb 26726   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-fallfac 16023  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-odz 16784  df-phi 16785  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-pws 17463  df-xrs 17516  df-qtop 17521  df-imas 17522  df-qus 17523  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-gim 19242  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-rim 20433  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-chr 21466  df-zn 21467  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evl1 22254  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-log 26517  df-cxp 26518  df-logb 26727  df-primroots 42105
This theorem is referenced by:  aks5lem6  42205
  Copyright terms: Public domain W3C validator