Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7 Structured version   Visualization version   GIF version

Theorem aks6d1c7 42172
Description: 𝑁 is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7.2 𝑃 = (chr‘𝐾)
aks6d1c7.3 (𝜑𝐾 ∈ Field)
aks6d1c7.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7.7 (𝜑𝑃𝑁)
aks6d1c7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7.11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7.12 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Assertion
Ref Expression
aks6d1c7 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑒,𝑓,𝑦   𝑥,𝐴,𝑦   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑥,𝐾   𝑀,𝑎   𝑀,𝑏   𝑥,𝑀,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑎   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝜑,𝑏   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓,𝑏)   𝑅(𝑏)   𝑀(𝑒,𝑓)

Proof of Theorem aks6d1c7
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑟)
2 aks6d1c7.7 . . . . . . . . . . . 12 (𝜑𝑃𝑁)
32ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃𝑁)
4 breq1 5110 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠𝑁𝑃𝑁))
5 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠 = 𝑟𝑃 = 𝑟))
64, 5bibi12d 345 . . . . . . . . . . . . 13 (𝑠 = 𝑃 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑃𝑁𝑃 = 𝑟)))
7 nfv 1914 . . . . . . . . . . . . . . . 16 𝑠(𝑝𝑁𝑝 = 𝑟)
8 nfv 1914 . . . . . . . . . . . . . . . 16 𝑝(𝑠𝑁𝑠 = 𝑟)
9 breq1 5110 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝𝑁𝑠𝑁))
10 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝 = 𝑟𝑠 = 𝑟))
119, 10bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑠 → ((𝑝𝑁𝑝 = 𝑟) ↔ (𝑠𝑁𝑠 = 𝑟)))
127, 8, 11cbvralw 3280 . . . . . . . . . . . . . . 15 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) ↔ ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1312biimpi 216 . . . . . . . . . . . . . 14 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1413adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
15 aks6d1c7.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 ∈ ℙ)
176, 14, 16rspcdva 3589 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
1817biimpd 229 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
193, 18mpd 15 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 = 𝑟)
2019ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑟)
2120eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑟 = 𝑃)
221, 21eqtrd 2764 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑃)
2322oveq1d 7402 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑃 pCnt 𝑁))
24 aks6d1c7.6 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘3))
25 eluzelz 12803 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
27 0red 11177 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
28 3re 12266 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ∈ ℝ)
3026zred 12638 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
31 3pos 12291 . . . . . . . . . . . . . . . . . . . 20 0 < 3
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
33 eluzle 12806 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3424, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 𝑁)
3527, 29, 30, 32, 34ltletrd 11334 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑁)
3626, 35jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
37 elnnz 12539 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
3836, 37sylibr 234 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
39 pcelnn 16841 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
4015, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
412, 40mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
4241nncnd 12202 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℂ)
4342mulridd 11191 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = (𝑃 pCnt 𝑁))
4443eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · 1))
45 1nn0 12458 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
47 pcidlem 16843 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (𝑃 pCnt (𝑃↑1)) = 1)
4815, 46, 47syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
4948eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → 1 = (𝑃 pCnt (𝑃↑1)))
50 prmnn 16644 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5115, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
5251nncnd 12202 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5352exp1d 14106 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
5453oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
5549, 54eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → 1 = (𝑃 pCnt 𝑃))
5655oveq2d 7403 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5744, 56eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5857adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5958ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
6016ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
61 nnq 12921 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
6251, 61syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℚ)
6351nnne0d 12236 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
6462, 63jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6564adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℙ) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6665ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6741nnzd 12556 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
6968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℤ)
7069adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℤ)
72 pcexp 16830 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7360, 66, 71, 72syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7473eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7559, 74eqtrd 2764 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7622eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑞)
7776oveq1d 7402 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7875, 77eqtrd 2764 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7923, 78eqtrd 2764 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
80 breq1 5110 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠𝑁𝑞𝑁))
81 equequ1 2025 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠 = 𝑟𝑞 = 𝑟))
8280, 81bibi12d 345 . . . . . . . . . . 11 (𝑠 = 𝑞 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑞𝑁𝑞 = 𝑟)))
8314adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
84 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
8582, 83, 84rspcdva 3589 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞𝑁𝑞 = 𝑟))
8685bicomd 223 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 = 𝑟𝑞𝑁))
8786notbid 318 . . . . . . . 8 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞 = 𝑟 ↔ ¬ 𝑞𝑁))
8887biimpa 476 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑁)
8984adantr 480 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ ℙ)
9038adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → 𝑁 ∈ ℕ)
9190ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑁 ∈ ℕ)
92 pceq0 16842 . . . . . . . 8 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9389, 91, 92syl2anc 584 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9488, 93mpbird 257 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = 0)
95 neqne 2933 . . . . . . . . . . . . 13 𝑞 = 𝑟𝑞𝑟)
9695adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑟)
973adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃𝑁)
9816adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 ∈ ℙ)
996, 83, 98rspcdva 3589 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10099biimpd 229 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10197, 100mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 = 𝑟)
102101adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 = 𝑟)
103102eqcomd 2735 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑟 = 𝑃)
10496, 103neeqtrd 2994 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑃)
105104neneqd 2930 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 = 𝑃)
106 prmuz2 16666 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
107106adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘2))
108107adantr 480 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ (ℤ‘2))
10916ad2antrr 726 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
110 dvdsprm 16673 . . . . . . . . . . 11 ((𝑞 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑞𝑃𝑞 = 𝑃))
111108, 109, 110syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞𝑃𝑞 = 𝑃))
112105, 111mtbird 325 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑃)
11351ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℕ)
114113nnzd 12556 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℤ)
11541adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
116115adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℕ)
117116adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
118117adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ)
119 prmdvdsexp 16685 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
12089, 114, 118, 119syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
121112, 120mtbird 325 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)))
122109, 91pccld 16821 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ0)
123113, 122nnexpcld 14210 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
124 pceq0 16842 . . . . . . . . 9 ((𝑞 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
12589, 123, 124syl2anc 584 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
126121, 125mpbird 257 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0)
127126eqcomd 2735 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 0 = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12894, 127eqtrd 2764 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12979, 128pm2.61dan 812 . . . 4 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
130129ralrimiva 3125 . . 3 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
131 aks6d1c7.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
132 aks6d1c7.2 . . . . 5 𝑃 = (chr‘𝐾)
133 aks6d1c7.3 . . . . 5 (𝜑𝐾 ∈ Field)
134 aks6d1c7.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
135 aks6d1c7.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
136 aks6d1c7.9 . . . . 5 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
137 aks6d1c7.10 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
138 aks6d1c7.11 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
139 aks6d1c7.12 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
140 aks6d1c7.13 . . . . 5 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
141 aks6d1c7.14 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
142131, 132, 133, 15, 134, 24, 2, 135, 136, 137, 138, 139, 140, 141aks6d1c7lem4 42171 . . . 4 (𝜑 → ∃!𝑝 ∈ ℙ 𝑝𝑁)
143 reu6 3697 . . . 4 (∃!𝑝 ∈ ℙ 𝑝𝑁 ↔ ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
144142, 143sylib 218 . . 3 (𝜑 → ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
145130, 144r19.29a 3141 . 2 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
14638nnnn0d 12503 . . 3 (𝜑𝑁 ∈ ℕ0)
14751nnnn0d 12503 . . . 4 (𝜑𝑃 ∈ ℕ0)
14815, 38pccld 16821 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
149147, 148nn0expcld 14211 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0)
150 pc11 16851 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0) → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
151146, 149, 150syl2anc 584 . 2 (𝜑 → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
152145, 151mpbird 257 1 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352   class class class wbr 5107  {copab 5169  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  cq 12907  ...cfz 13468  cfl 13752  cexp 14026  csqrt 15199  cdvds 16222   gcd cgcd 16464  cprime 16641  odcodz 16733  ϕcphi 16734   pCnt cpc 16807  Basecbs 17179  +gcplusg 17220  .gcmg 18999  mulGrpcmgp 20049   RingIso crs 20379  Fieldcfield 20639  ℤRHomczrh 21409  chrcchr 21411  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   logb clogb 26674   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-fallfac 15973  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-odz 16735  df-phi 16736  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-rim 20382  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-zn 21416  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-log 26465  df-cxp 26466  df-logb 26675  df-primroots 42080
This theorem is referenced by:  aks5lem6  42180
  Copyright terms: Public domain W3C validator