Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7 Structured version   Visualization version   GIF version

Theorem aks6d1c7 42177
Description: 𝑁 is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7.2 𝑃 = (chr‘𝐾)
aks6d1c7.3 (𝜑𝐾 ∈ Field)
aks6d1c7.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7.7 (𝜑𝑃𝑁)
aks6d1c7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7.11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7.12 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Assertion
Ref Expression
aks6d1c7 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑒,𝑓,𝑦   𝑥,𝐴,𝑦   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑥,𝐾   𝑀,𝑎   𝑀,𝑏   𝑥,𝑀,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑅,𝑎   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝜑,𝑏   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓,𝑏)   𝑅(𝑏)   𝑀(𝑒,𝑓)

Proof of Theorem aks6d1c7
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑟)
2 aks6d1c7.7 . . . . . . . . . . . 12 (𝜑𝑃𝑁)
32ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃𝑁)
4 breq1 5098 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠𝑁𝑃𝑁))
5 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑠 = 𝑃 → (𝑠 = 𝑟𝑃 = 𝑟))
64, 5bibi12d 345 . . . . . . . . . . . . 13 (𝑠 = 𝑃 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑃𝑁𝑃 = 𝑟)))
7 nfv 1914 . . . . . . . . . . . . . . . 16 𝑠(𝑝𝑁𝑝 = 𝑟)
8 nfv 1914 . . . . . . . . . . . . . . . 16 𝑝(𝑠𝑁𝑠 = 𝑟)
9 breq1 5098 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝𝑁𝑠𝑁))
10 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑠 → (𝑝 = 𝑟𝑠 = 𝑟))
119, 10bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑠 → ((𝑝𝑁𝑝 = 𝑟) ↔ (𝑠𝑁𝑠 = 𝑟)))
127, 8, 11cbvralw 3272 . . . . . . . . . . . . . . 15 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) ↔ ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1312biimpi 216 . . . . . . . . . . . . . 14 (∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
1413adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
15 aks6d1c7.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 ∈ ℙ)
176, 14, 16rspcdva 3580 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
1817biimpd 229 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃𝑁𝑃 = 𝑟))
193, 18mpd 15 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → 𝑃 = 𝑟)
2019ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑟)
2120eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑟 = 𝑃)
221, 21eqtrd 2764 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑞 = 𝑃)
2322oveq1d 7368 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑃 pCnt 𝑁))
24 aks6d1c7.6 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘3))
25 eluzelz 12764 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
27 0red 11137 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
28 3re 12227 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ∈ ℝ)
3026zred 12599 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
31 3pos 12252 . . . . . . . . . . . . . . . . . . . 20 0 < 3
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
33 eluzle 12767 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3424, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 𝑁)
3527, 29, 30, 32, 34ltletrd 11295 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑁)
3626, 35jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
37 elnnz 12500 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
3836, 37sylibr 234 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
39 pcelnn 16801 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
4015, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
412, 40mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
4241nncnd 12163 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℂ)
4342mulridd 11151 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = (𝑃 pCnt 𝑁))
4443eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · 1))
45 1nn0 12419 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
47 pcidlem 16803 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (𝑃 pCnt (𝑃↑1)) = 1)
4815, 46, 47syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
4948eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → 1 = (𝑃 pCnt (𝑃↑1)))
50 prmnn 16604 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5115, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
5251nncnd 12163 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5352exp1d 14067 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
5453oveq2d 7369 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
5549, 54eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → 1 = (𝑃 pCnt 𝑃))
5655oveq2d 7369 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑁) · 1) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5744, 56eqtrd 2764 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5857adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
5958ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
6016ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
61 nnq 12882 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
6251, 61syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℚ)
6351nnne0d 12197 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
6462, 63jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6564adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℙ) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6665ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0))
6741nnzd 12517 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
6968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℤ)
7069adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℤ)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℤ)
72 pcexp 16790 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7360, 66, 71, 72syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)))
7473eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → ((𝑃 pCnt 𝑁) · (𝑃 pCnt 𝑃)) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7559, 74eqtrd 2764 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7622eqcomd 2735 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → 𝑃 = 𝑞)
7776oveq1d 7368 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7875, 77eqtrd 2764 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
7923, 78eqtrd 2764 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
80 breq1 5098 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠𝑁𝑞𝑁))
81 equequ1 2025 . . . . . . . . . . . 12 (𝑠 = 𝑞 → (𝑠 = 𝑟𝑞 = 𝑟))
8280, 81bibi12d 345 . . . . . . . . . . 11 (𝑠 = 𝑞 → ((𝑠𝑁𝑠 = 𝑟) ↔ (𝑞𝑁𝑞 = 𝑟)))
8314adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → ∀𝑠 ∈ ℙ (𝑠𝑁𝑠 = 𝑟))
84 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
8582, 83, 84rspcdva 3580 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞𝑁𝑞 = 𝑟))
8685bicomd 223 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 = 𝑟𝑞𝑁))
8786notbid 318 . . . . . . . 8 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞 = 𝑟 ↔ ¬ 𝑞𝑁))
8887biimpa 476 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑁)
8984adantr 480 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ ℙ)
9038adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℙ) → 𝑁 ∈ ℕ)
9190ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑁 ∈ ℕ)
92 pceq0 16802 . . . . . . . 8 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9389, 91, 92syl2anc 584 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt 𝑁) = 0 ↔ ¬ 𝑞𝑁))
9488, 93mpbird 257 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = 0)
95 neqne 2933 . . . . . . . . . . . . 13 𝑞 = 𝑟𝑞𝑟)
9695adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑟)
973adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃𝑁)
9816adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 ∈ ℙ)
996, 83, 98rspcdva 3580 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10099biimpd 229 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃𝑁𝑃 = 𝑟))
10197, 100mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑃 = 𝑟)
102101adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 = 𝑟)
103102eqcomd 2735 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑟 = 𝑃)
10496, 103neeqtrd 2994 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞𝑃)
105104neneqd 2930 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 = 𝑃)
106 prmuz2 16626 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
107106adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘2))
108107adantr 480 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑞 ∈ (ℤ‘2))
10916ad2antrr 726 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℙ)
110 dvdsprm 16633 . . . . . . . . . . 11 ((𝑞 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑞𝑃𝑞 = 𝑃))
111108, 109, 110syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞𝑃𝑞 = 𝑃))
112105, 111mtbird 325 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞𝑃)
11351ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℕ)
114113nnzd 12517 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 𝑃 ∈ ℤ)
11541adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
116115adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → (𝑃 pCnt 𝑁) ∈ ℕ)
117116adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ)
118117adantr 480 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ)
119 prmdvdsexp 16645 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
12089, 114, 118, 119syl3anc 1373 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)) ↔ 𝑞𝑃))
121112, 120mtbird 325 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁)))
122109, 91pccld 16781 . . . . . . . . . 10 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃 pCnt 𝑁) ∈ ℕ0)
123113, 122nnexpcld 14171 . . . . . . . . 9 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
124 pceq0 16802 . . . . . . . . 9 ((𝑞 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
12589, 123, 124syl2anc 584 . . . . . . . 8 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → ((𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0 ↔ ¬ 𝑞 ∥ (𝑃↑(𝑃 pCnt 𝑁))))
126121, 125mpbird 257 . . . . . . 7 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))) = 0)
127126eqcomd 2735 . . . . . 6 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → 0 = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12894, 127eqtrd 2764 . . . . 5 (((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 = 𝑟) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
12979, 128pm2.61dan 812 . . . 4 ((((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
130129ralrimiva 3121 . . 3 (((𝜑𝑟 ∈ ℙ) ∧ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟)) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
131 aks6d1c7.1 . . . . 5 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
132 aks6d1c7.2 . . . . 5 𝑃 = (chr‘𝐾)
133 aks6d1c7.3 . . . . 5 (𝜑𝐾 ∈ Field)
134 aks6d1c7.5 . . . . 5 (𝜑𝑅 ∈ ℕ)
135 aks6d1c7.8 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
136 aks6d1c7.9 . . . . 5 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
137 aks6d1c7.10 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
138 aks6d1c7.11 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
139 aks6d1c7.12 . . . . 5 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
140 aks6d1c7.13 . . . . 5 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
141 aks6d1c7.14 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
142131, 132, 133, 15, 134, 24, 2, 135, 136, 137, 138, 139, 140, 141aks6d1c7lem4 42176 . . . 4 (𝜑 → ∃!𝑝 ∈ ℙ 𝑝𝑁)
143 reu6 3688 . . . 4 (∃!𝑝 ∈ ℙ 𝑝𝑁 ↔ ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
144142, 143sylib 218 . . 3 (𝜑 → ∃𝑟 ∈ ℙ ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 = 𝑟))
145130, 144r19.29a 3137 . 2 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁))))
14638nnnn0d 12464 . . 3 (𝜑𝑁 ∈ ℕ0)
14751nnnn0d 12464 . . . 4 (𝜑𝑃 ∈ ℕ0)
14815, 38pccld 16781 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
149147, 148nn0expcld 14172 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0)
150 pc11 16811 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ0) → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
151146, 149, 150syl2anc 584 . 2 (𝜑 → (𝑁 = (𝑃↑(𝑃 pCnt 𝑁)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑁) = (𝑞 pCnt (𝑃↑(𝑃 pCnt 𝑁)))))
152145, 151mpbird 257 1 (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343   class class class wbr 5095  {copab 5157  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169  cn 12147  2c2 12202  3c3 12203  0cn0 12403  cz 12490  cuz 12754  cq 12868  ...cfz 13429  cfl 13713  cexp 13987  csqrt 15159  cdvds 16182   gcd cgcd 16424  cprime 16601  odcodz 16693  ϕcphi 16694   pCnt cpc 16767  Basecbs 17139  +gcplusg 17180  .gcmg 18965  mulGrpcmgp 20044   RingIso crs 20374  Fieldcfield 20634  ℤRHomczrh 21425  chrcchr 21427  algSccascl 21778  var1cv1 22077  Poly1cpl1 22078  eval1ce1 22218   logb clogb 26691   PrimRoots cprimroots 42084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-prod 15830  df-fallfac 15933  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-dvds 16183  df-gcd 16425  df-prm 16602  df-odz 16695  df-phi 16696  df-pc 16768  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-pws 17372  df-xrs 17425  df-qtop 17430  df-imas 17431  df-qus 17432  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-nsg 19022  df-eqg 19023  df-ghm 19111  df-gim 19157  df-cntz 19215  df-od 19426  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-srg 20091  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-dvr 20305  df-rhm 20376  df-rim 20377  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-rlreg 20598  df-domn 20599  df-idom 20600  df-drng 20635  df-field 20636  df-lmod 20784  df-lss 20854  df-lsp 20894  df-sra 21096  df-rgmod 21097  df-lidl 21134  df-rsp 21135  df-2idl 21176  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-zring 21373  df-zrh 21429  df-chr 21431  df-zn 21432  df-assa 21779  df-asp 21780  df-ascl 21781  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-evls 21998  df-evl 21999  df-psr1 22081  df-vr1 22082  df-ply1 22083  df-coe1 22084  df-evl1 22220  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-mdeg 25977  df-deg1 25978  df-mon1 26053  df-uc1p 26054  df-q1p 26055  df-r1p 26056  df-log 26482  df-cxp 26483  df-logb 26692  df-primroots 42085
This theorem is referenced by:  aks5lem6  42185
  Copyright terms: Public domain W3C validator