![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringring | Structured version Visualization version GIF version |
Description: The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zringring | ⊢ ℤring ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringcrng 21482 | . 2 ⊢ ℤring ∈ CRing | |
2 | crngring 20272 | . 2 ⊢ (ℤring ∈ CRing → ℤring ∈ Ring) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ℤring ∈ Ring |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ringcrg 20260 CRingccrg 20261 ℤringczring 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-cnfld 21388 df-zring 21481 |
This theorem is referenced by: zringrng 21484 zringabl 21485 zringgrp 21486 zringnzr 21494 zringlpirlem1 21496 zringlpirlem3 21498 zringlpir 21501 prmirredlem 21506 prmirred 21508 mulgrhm 21511 irinitoringc 21513 nzerooringczr 21514 pzriprnglem2 21516 pzriprnglem4 21518 pzriprnglem5 21519 pzriprnglem6 21520 pzriprnglem8 21522 pzriprnglem10 21524 pzriprnglem12 21526 pzriprng1ALT 21530 pzriprng 21531 pzriprng1 21532 zlmsca 21558 zlmlmod 21560 znlidl 21571 znval 21573 znbas 21585 znzrh2 21587 znzrhfo 21589 zndvds 21591 zclmncvs 25201 zndvdchrrhm 41927 aks6d1c6isolem2 42132 aks6d1c6isolem3 42133 mzpmfp 42703 2zrng 47964 zlmodzxzlmod 48079 zlmodzxzel 48080 zlmodzxz0 48081 zlmodzxzadd 48083 |
Copyright terms: Public domain | W3C validator |