![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhcau | Structured version Visualization version GIF version |
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhlm.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
hhlm.2 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
hhcau | β’ Cauchy = ((Cauβπ·) β© ( β βm β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhlm.1 | . 2 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
2 | 1 | hhnv 31031 | . 2 β’ π β NrmCVec |
3 | 1 | hhba 31033 | . 2 β’ β = (BaseSetβπ) |
4 | hhlm.2 | . 2 β’ π· = (IndMetβπ) | |
5 | 1, 2, 3, 4 | h2hcau 30845 | 1 β’ Cauchy = ((Cauβπ·) β© ( β βm β)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β© cin 3944 β¨cop 4635 βcfv 6547 (class class class)co 7417 βm cmap 8843 βcn 12242 Cauccau 25211 IndMetcims 30457 βchba 30785 +β cva 30786 Β·β csm 30787 normβcno 30789 Cauchyccauold 30792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30865 ax-hfvadd 30866 ax-hvcom 30867 ax-hvass 30868 ax-hv0cl 30869 ax-hvaddid 30870 ax-hfvmul 30871 ax-hvmulid 30872 ax-hvmulass 30873 ax-hvdistr1 30874 ax-hvdistr2 30875 ax-hvmul0 30876 ax-hfi 30945 ax-his1 30948 ax-his2 30949 ax-his3 30950 ax-his4 30951 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-xneg 13124 df-xadd 13125 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-cau 25214 df-grpo 30359 df-gid 30360 df-ginv 30361 df-gdiv 30362 df-ablo 30411 df-vc 30425 df-nv 30458 df-va 30461 df-ba 30462 df-sm 30463 df-0v 30464 df-vs 30465 df-nmcv 30466 df-ims 30467 df-hnorm 30834 df-hvsub 30837 df-hcau 30839 |
This theorem is referenced by: hhcmpl 31066 hhcms 31069 hlimcaui 31102 hhsscms 31144 |
Copyright terms: Public domain | W3C validator |