HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcau Structured version   Visualization version   GIF version

Theorem hhcau 31064
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhlm.1 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
hhlm.2 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
hhcau Cauchy = ((Cauβ€˜π·) ∩ ( β„‹ ↑m β„•))

Proof of Theorem hhcau
StepHypRef Expression
1 hhlm.1 . 2 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
21hhnv 31031 . 2 π‘ˆ ∈ NrmCVec
31hhba 31033 . 2 β„‹ = (BaseSetβ€˜π‘ˆ)
4 hhlm.2 . 2 𝐷 = (IndMetβ€˜π‘ˆ)
51, 2, 3, 4h2hcau 30845 1 Cauchy = ((Cauβ€˜π·) ∩ ( β„‹ ↑m β„•))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∩ cin 3944  βŸ¨cop 4635  β€˜cfv 6547  (class class class)co 7417   ↑m cmap 8843  β„•cn 12242  Cauccau 25211  IndMetcims 30457   β„‹chba 30785   +β„Ž cva 30786   Β·β„Ž csm 30787  normβ„Žcno 30789  Cauchyccauold 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218  ax-hilex 30865  ax-hfvadd 30866  ax-hvcom 30867  ax-hvass 30868  ax-hv0cl 30869  ax-hvaddid 30870  ax-hfvmul 30871  ax-hvmulid 30872  ax-hvmulass 30873  ax-hvdistr1 30874  ax-hvdistr2 30875  ax-hvmul0 30876  ax-hfi 30945  ax-his1 30948  ax-his2 30949  ax-his3 30950  ax-his4 30951
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-xneg 13124  df-xadd 13125  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-cau 25214  df-grpo 30359  df-gid 30360  df-ginv 30361  df-gdiv 30362  df-ablo 30411  df-vc 30425  df-nv 30458  df-va 30461  df-ba 30462  df-sm 30463  df-0v 30464  df-vs 30465  df-nmcv 30466  df-ims 30467  df-hnorm 30834  df-hvsub 30837  df-hcau 30839
This theorem is referenced by:  hhcmpl  31066  hhcms  31069  hlimcaui  31102  hhsscms  31144
  Copyright terms: Public domain W3C validator