Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6f Structured version   Visualization version   GIF version

Theorem hdmap1l6f 39735
Description: Lemmma for hdmap1l6 39741. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
hdmap1l6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
hdmap1l6f (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)))

Proof of Theorem hdmap1l6f
StepHypRef Expression
1 hdmap1l6.h . 2 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . 2 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . 2 + = (+g𝑈)
5 hdmap1l6.s . 2 = (-g𝑈)
6 hdmap1l6c.o . 2 0 = (0g𝑈)
7 hdmap1l6.n . 2 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . 2 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . 2 = (+g𝐶)
11 hdmap1l6.r . 2 𝑅 = (-g𝐶)
12 hdmap1l6.q . 2 𝑄 = (0g𝐶)
13 hdmap1l6.l . 2 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . 2 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . 2 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6d.w . 2 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
21 hdmap1l6d.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
221, 2, 16dvhlvec 39029 . . . 4 (𝜑𝑈 ∈ LVec)
2321eldifad 3896 . . . 4 (𝜑𝑌𝑉)
2420eldifad 3896 . . . 4 (𝜑𝑤𝑉)
2518eldifad 3896 . . . . . 6 (𝜑𝑋𝑉)
26 hdmap1l6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2726eldifad 3896 . . . . . 6 (𝜑𝑍𝑉)
28 hdmap1l6d.xn . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
293, 7, 22, 25, 23, 27, 28lspindpi 20284 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3029simpld 498 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
31 hdmap1l6d.wn . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
323, 6, 7, 22, 18, 23, 24, 30, 31lspindp1 20285 . . 3 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})))
3332simprd 499 . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
343, 7, 22, 24, 25, 23, 31lspindpi 20284 . . 3 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3534simprd 499 . 2 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
36 eqidd 2740 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
37 eqidd 2740 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 33, 35, 36, 37hdmap1l6a 39729 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2943  cdif 3881  {csn 4558  {cpr 4560  cotp 4566  cfv 6415  (class class class)co 7252  Basecbs 16815  +gcplusg 16863  0gc0g 17042  -gcsg 18469  LSpanclspn 20123  HLchlt 37270  LHypclh 37904  DVecHcdvh 38998  LCDualclcd 39506  mapdcmpd 39544  HDMap1chdma1 39711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854  ax-riotaBAD 36873
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-om 7685  df-1st 7801  df-2nd 7802  df-tpos 8010  df-undef 8057  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-n0 12139  df-z 12225  df-uz 12487  df-fz 13144  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-sca 16879  df-vsca 16880  df-0g 17044  df-mre 17187  df-mrc 17188  df-acs 17190  df-proset 17903  df-poset 17921  df-plt 17938  df-lub 17954  df-glb 17955  df-join 17956  df-meet 17957  df-p0 18033  df-p1 18034  df-lat 18040  df-clat 18107  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-submnd 18321  df-grp 18470  df-minusg 18471  df-sbg 18472  df-subg 18642  df-cntz 18813  df-oppg 18840  df-lsm 19131  df-cmn 19278  df-abl 19279  df-mgp 19611  df-ur 19628  df-ring 19675  df-oppr 19752  df-dvdsr 19773  df-unit 19774  df-invr 19804  df-dvr 19815  df-drng 19883  df-lmod 20015  df-lss 20084  df-lsp 20124  df-lvec 20255  df-lsatoms 36896  df-lshyp 36897  df-lcv 36939  df-lfl 36978  df-lkr 37006  df-ldual 37044  df-oposet 37096  df-ol 37098  df-oml 37099  df-covers 37186  df-ats 37187  df-atl 37218  df-cvlat 37242  df-hlat 37271  df-llines 37418  df-lplanes 37419  df-lvols 37420  df-lines 37421  df-psubsp 37423  df-pmap 37424  df-padd 37716  df-lhyp 37908  df-laut 37909  df-ldil 38024  df-ltrn 38025  df-trl 38079  df-tgrp 38663  df-tendo 38675  df-edring 38677  df-dveca 38923  df-disoa 38949  df-dvech 38999  df-dib 39059  df-dic 39093  df-dih 39149  df-doch 39268  df-djh 39315  df-lcdual 39507  df-mapd 39545  df-hdmap1 39713
This theorem is referenced by:  hdmap1l6g  39736
  Copyright terms: Public domain W3C validator