| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6fN | Structured version Visualization version GIF version | ||
| Description: Lemmma for mapdh6N 41765. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh.s | ⊢ − = (-g‘𝑈) |
| mapdhc.o | ⊢ 0 = (0g‘𝑈) |
| mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh.p | ⊢ + = (+g‘𝑈) |
| mapdh.a | ⊢ ✚ = (+g‘𝐶) |
| mapdh6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| mapdh6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| mapdh6fN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | mapdh.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 5 | mapdh.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | mapdh.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | mapdh.s | . 2 ⊢ − = (-g‘𝑈) | |
| 8 | mapdhc.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 9 | mapdh.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | mapdh.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdh.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | mapdh.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 13 | mapdh.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 14 | mapdh.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdhc.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdhcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 18 | mapdh.p | . 2 ⊢ + = (+g‘𝑈) | |
| 19 | mapdh.a | . 2 ⊢ ✚ = (+g‘𝐶) | |
| 20 | mapdh6d.w | . 2 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 21 | mapdh6d.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 3, 5, 14 | dvhlvec 41127 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 23 | 21 | eldifad 3912 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 24 | 20 | eldifad 3912 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 25 | 17 | eldifad 3912 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 26 | mapdh6d.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 27 | 26 | eldifad 3912 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 28 | mapdh6d.xn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 29 | 6, 9, 22, 25, 23, 27, 28 | lspindpi 21062 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 30 | 29 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 31 | mapdh6d.wn | . . . 4 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 32 | 6, 8, 9, 22, 17, 23, 24, 30, 31 | lspindp1 21063 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))) |
| 33 | 32 | simprd 495 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})) |
| 34 | 6, 9, 22, 24, 25, 23, 31 | lspindpi 21062 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 35 | 34 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 36 | eqidd 2731 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) | |
| 37 | eqidd 2731 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
| 38 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 33, 35, 36, 37 | mapdh6aN 41753 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ∖ cdif 3897 ifcif 4473 {csn 4574 {cpr 4576 〈cotp 4582 ↦ cmpt 5170 ‘cfv 6477 ℩crio 7297 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17112 +gcplusg 17153 0gc0g 17335 -gcsg 18840 LSpanclspn 20897 HLchlt 39368 LHypclh 40002 DVecHcdvh 41096 LCDualclcd 41604 mapdcmpd 41642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-0g 17337 df-mre 17480 df-mrc 17481 df-acs 17483 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cntz 19222 df-oppg 19251 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-nzr 20421 df-rlreg 20602 df-domn 20603 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 df-lplanes 39517 df-lvols 39518 df-lines 39519 df-psubsp 39521 df-pmap 39522 df-padd 39814 df-lhyp 40006 df-laut 40007 df-ldil 40122 df-ltrn 40123 df-trl 40177 df-tgrp 40761 df-tendo 40773 df-edring 40775 df-dveca 41021 df-disoa 41047 df-dvech 41097 df-dib 41157 df-dic 41191 df-dih 41247 df-doch 41366 df-djh 41413 df-lcdual 41605 df-mapd 41643 |
| This theorem is referenced by: mapdh6gN 41760 |
| Copyright terms: Public domain | W3C validator |