MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqa Structured version   Visualization version   GIF version

Theorem mbfeqa 25023
Description: If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqa.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
mbfeqa.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
mbfeqa (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqa
StepHypRef Expression
1 mbfeqa.1 . . . 4 (𝜑𝐴 ⊆ ℝ)
2 mbfeqa.2 . . . 4 (𝜑 → (vol*‘𝐴) = 0)
3 mbfeqa.3 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
43fveq2d 6851 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℜ‘𝐶) = (ℜ‘𝐷))
5 mbfeqa.4 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
65recld 15086 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘𝐶) ∈ ℝ)
7 mbfeqa.5 . . . . 5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
87recld 15086 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘𝐷) ∈ ℝ)
91, 2, 4, 6, 8mbfeqalem2 25022 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ↔ (𝑥𝐵 ↦ (ℜ‘𝐷)) ∈ MblFn))
103fveq2d 6851 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → (ℑ‘𝐶) = (ℑ‘𝐷))
115imcld 15087 . . . 4 ((𝜑𝑥𝐵) → (ℑ‘𝐶) ∈ ℝ)
127imcld 15087 . . . 4 ((𝜑𝑥𝐵) → (ℑ‘𝐷) ∈ ℝ)
131, 2, 10, 11, 12mbfeqalem2 25022 . . 3 (𝜑 → ((𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn ↔ (𝑥𝐵 ↦ (ℑ‘𝐷)) ∈ MblFn))
149, 13anbi12d 632 . 2 (𝜑 → (((𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn) ↔ ((𝑥𝐵 ↦ (ℜ‘𝐷)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐷)) ∈ MblFn)))
155ismbfcn2 25018 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ ((𝑥𝐵 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐶)) ∈ MblFn)))
167ismbfcn2 25018 . 2 (𝜑 → ((𝑥𝐵𝐷) ∈ MblFn ↔ ((𝑥𝐵 ↦ (ℜ‘𝐷)) ∈ MblFn ∧ (𝑥𝐵 ↦ (ℑ‘𝐷)) ∈ MblFn)))
1714, 15, 163bitr4d 311 1 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cdif 3912  wss 3915  cmpt 5193  cfv 6501  cc 11056  cr 11057  0cc0 11058  cre 14989  cim 14990  vol*covol 24842  MblFncmbf 24994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-symdif 4207  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-mbf 24999
This theorem is referenced by:  itgeqa  25194
  Copyright terms: Public domain W3C validator