Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplmon2cl | Structured version Visualization version GIF version |
Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
mplmon2cl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon2cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon2cl.z | ⊢ 0 = (0g‘𝑅) |
mplmon2cl.c | ⊢ 𝐶 = (Base‘𝑅) |
mplmon2cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon2cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon2cl.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmon2cl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
mplmon2cl.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmon2cl | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon2cl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
3 | mplmon2cl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mplmon2cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
6 | mplmon2cl.c | . . 3 ⊢ 𝐶 = (Base‘𝑅) | |
7 | mplmon2cl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
8 | mplmon2cl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | mplmon2cl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
10 | mplmon2cl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mplmon2 21179 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
12 | 1 | mpllmod 21133 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
13 | 7, 8, 12 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
14 | 1, 7, 8 | mplsca 21127 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
15 | 14 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
16 | 6, 15 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
17 | 10, 16 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
18 | mplmon2cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
19 | 1, 18, 5, 4, 3, 7, 8, 9 | mplmon 21146 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) |
20 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
21 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
22 | 18, 20, 2, 21 | lmodvscl 20055 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
23 | 13, 17, 19, 22 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
24 | 11, 23 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ifcif 4456 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 1rcur 19652 Ringcrg 19698 LModclmod 20038 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-psr 21022 df-mpl 21024 |
This theorem is referenced by: evlslem2 21199 evlslem3 21200 |
Copyright terms: Public domain | W3C validator |