![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplmon2cl | Structured version Visualization version GIF version |
Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
mplmon2cl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon2cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon2cl.z | ⊢ 0 = (0g‘𝑅) |
mplmon2cl.c | ⊢ 𝐶 = (Base‘𝑅) |
mplmon2cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon2cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon2cl.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmon2cl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
mplmon2cl.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmon2cl | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon2cl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
3 | mplmon2cl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | eqid 2736 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mplmon2cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
6 | mplmon2cl.c | . . 3 ⊢ 𝐶 = (Base‘𝑅) | |
7 | mplmon2cl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
8 | mplmon2cl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | mplmon2cl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
10 | mplmon2cl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mplmon2 21467 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
12 | 1 | mpllmod 21421 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
13 | 7, 8, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
14 | 1, 7, 8 | mplsca 21415 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
15 | 14 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
16 | 6, 15 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
17 | 10, 16 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
18 | mplmon2cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
19 | 1, 18, 5, 4, 3, 7, 8, 9 | mplmon 21434 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) |
20 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
21 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
22 | 18, 20, 2, 21 | lmodvscl 20337 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
23 | 13, 17, 19, 22 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
24 | 11, 23 | eqeltrrd 2839 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3407 ifcif 4486 ↦ cmpt 5188 ◡ccnv 5632 “ cima 5636 ‘cfv 6496 (class class class)co 7356 ↑m cmap 8764 Fincfn 8882 ℕcn 12152 ℕ0cn0 12412 Basecbs 17082 Scalarcsca 17135 ·𝑠 cvsca 17136 0gc0g 17320 1rcur 19911 Ringcrg 19962 LModclmod 20320 mPoly cmpl 21306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-cnex 11106 ax-resscn 11107 ax-1cn 11108 ax-icn 11109 ax-addcl 11110 ax-addrcl 11111 ax-mulcl 11112 ax-mulrcl 11113 ax-mulcom 11114 ax-addass 11115 ax-mulass 11116 ax-distr 11117 ax-i2m1 11118 ax-1ne0 11119 ax-1rid 11120 ax-rnegex 11121 ax-rrecex 11122 ax-cnre 11123 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 ax-pre-mulgt0 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-of 7616 df-om 7802 df-1st 7920 df-2nd 7921 df-supp 8092 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-1o 8411 df-er 8647 df-map 8766 df-ixp 8835 df-en 8883 df-dom 8884 df-sdom 8885 df-fin 8886 df-fsupp 9305 df-sup 9377 df-pnf 11190 df-mnf 11191 df-xr 11192 df-ltxr 11193 df-le 11194 df-sub 11386 df-neg 11387 df-nn 12153 df-2 12215 df-3 12216 df-4 12217 df-5 12218 df-6 12219 df-7 12220 df-8 12221 df-9 12222 df-n0 12413 df-z 12499 df-dec 12618 df-uz 12763 df-fz 13424 df-struct 17018 df-sets 17035 df-slot 17053 df-ndx 17065 df-base 17083 df-ress 17112 df-plusg 17145 df-mulr 17146 df-sca 17148 df-vsca 17149 df-ip 17150 df-tset 17151 df-ple 17152 df-ds 17154 df-hom 17156 df-cco 17157 df-0g 17322 df-prds 17328 df-pws 17330 df-mgm 18496 df-sgrp 18545 df-mnd 18556 df-grp 18750 df-minusg 18751 df-sbg 18752 df-subg 18923 df-mgp 19895 df-ur 19912 df-ring 19964 df-lmod 20322 df-lss 20391 df-psr 21309 df-mpl 21311 |
This theorem is referenced by: evlslem2 21487 evlslem3 21488 |
Copyright terms: Public domain | W3C validator |