| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon2cl | Structured version Visualization version GIF version | ||
| Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| mplmon2cl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon2cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon2cl.z | ⊢ 0 = (0g‘𝑅) |
| mplmon2cl.c | ⊢ 𝐶 = (Base‘𝑅) |
| mplmon2cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon2cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon2cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmon2cl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| mplmon2cl.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmon2cl | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2cl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 3 | mplmon2cl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 4 | eqid 2730 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 5 | mplmon2cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 6 | mplmon2cl.c | . . 3 ⊢ 𝐶 = (Base‘𝑅) | |
| 7 | mplmon2cl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 8 | mplmon2cl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | mplmon2cl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 10 | mplmon2cl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mplmon2 21975 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 12 | 1, 7, 8 | mpllmodd 21940 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 13 | 1, 7, 8 | mplsca 21929 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 14 | 13 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 15 | 6, 14 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
| 16 | 10, 15 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
| 17 | mplmon2cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 18 | 1, 17, 5, 4, 3, 7, 8, 9 | mplmon 21949 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) |
| 19 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 20 | eqid 2730 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 21 | 17, 19, 2, 20 | lmodvscl 20791 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
| 22 | 12, 16, 18, 21 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
| 23 | 11, 22 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ifcif 4491 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 1rcur 20097 Ringcrg 20149 LModclmod 20773 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-psr 21825 df-mpl 21827 |
| This theorem is referenced by: evlslem2 21993 evlslem3 21994 |
| Copyright terms: Public domain | W3C validator |