| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sclmul | Structured version Visualization version GIF version | ||
| Description: Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
| coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1sclmul.u | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sclmul | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 6 | eqid 2733 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 7 | eqid 2733 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 14 | 0nn0 12406 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul 22201 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
| 17 | coe1sclmul.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
| 18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 22205 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 19 | 18 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 20 | 19 | fvoveq1d 7377 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌))) |
| 21 | nn0ex 12397 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
| 23 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
| 24 | fvexd 6846 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
| 25 | fconstmpt 5683 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
| 27 | eqid 2733 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
| 28 | 27, 8, 3, 2 | coe1f 22134 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
| 29 | 28 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌):ℕ0⟶𝐾) |
| 30 | 29 | feqmptd 6899 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 31 | 22, 23, 24, 26, 30 | offval2 7639 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥)))) |
| 32 | nn0ge0 12416 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
| 33 | 32 | iftrued 4484 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0)))) |
| 34 | nn0cn 12401 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 35 | 34 | subid1d 11471 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
| 36 | 35 | fveq2d 6835 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
| 37 | 36 | oveq2d 7371 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 38 | 33, 37 | eqtrd 2768 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 39 | 38 | mpteq2ia 5190 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 40 | 31, 39 | eqtr4di 2786 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
| 41 | 16, 20, 40 | 3eqtr4d 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 0cc0 11016 ≤ cle 11157 − cmin 11354 ℕ0cn0 12391 Basecbs 17130 .rcmulr 17172 ·𝑠 cvsca 17175 0gc0g 17353 .gcmg 18990 mulGrpcmgp 20068 Ringcrg 20161 algSccascl 21799 var1cv1 22098 Poly1cpl1 22099 coe1cco1 22100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-subrng 20471 df-subrg 20495 df-lmod 20805 df-lss 20875 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 |
| This theorem is referenced by: coe1sclmulfv 22207 deg1mul3 26058 uc1pmon1p 26094 |
| Copyright terms: Public domain | W3C validator |