Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1sclmul | Structured version Visualization version GIF version |
Description: Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1sclmul.u | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
coe1sclmul | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
5 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
6 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
7 | eqid 2738 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
11 | simp3 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
12 | simp1 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
13 | simp2 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
14 | 0nn0 12248 | . . . 4 ⊢ 0 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul 21448 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
17 | coe1sclmul.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 21452 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
19 | 18 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
20 | 19 | fvoveq1d 7297 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌))) |
21 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
23 | simpl2 1191 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
24 | fvexd 6789 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
25 | fconstmpt 5649 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
26 | 25 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
27 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
28 | 27, 8, 3, 2 | coe1f 21382 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
29 | 28 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌):ℕ0⟶𝐾) |
30 | 29 | feqmptd 6837 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
31 | 22, 23, 24, 26, 30 | offval2 7553 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥)))) |
32 | nn0ge0 12258 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
33 | 32 | iftrued 4467 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0)))) |
34 | nn0cn 12243 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
35 | 34 | subid1d 11321 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
36 | 35 | fveq2d 6778 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
37 | 36 | oveq2d 7291 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
38 | 33, 37 | eqtrd 2778 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
39 | 38 | mpteq2ia 5177 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥))) |
40 | 31, 39 | eqtr4di 2796 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
41 | 16, 20, 40 | 3eqtr4d 2788 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 0cc0 10871 ≤ cle 11010 − cmin 11205 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 ·𝑠 cvsca 16966 0gc0g 17150 .gcmg 18700 mulGrpcmgp 19720 Ringcrg 19783 algSccascl 21059 var1cv1 21347 Poly1cpl1 21348 coe1cco1 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 |
This theorem is referenced by: coe1sclmulfv 21454 deg1mul3 25280 uc1pmon1p 25316 |
Copyright terms: Public domain | W3C validator |