| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sclmul | Structured version Visualization version GIF version | ||
| Description: Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
| coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1sclmul.u | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sclmul | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 5 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 6 | eqid 2730 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 7 | eqid 2730 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 14 | 0nn0 12388 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul 22184 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
| 17 | coe1sclmul.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
| 18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 22188 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 19 | 18 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 20 | 19 | fvoveq1d 7363 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌))) |
| 21 | nn0ex 12379 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
| 23 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
| 24 | fvexd 6832 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
| 25 | fconstmpt 5676 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
| 28 | 27, 8, 3, 2 | coe1f 22117 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
| 29 | 28 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌):ℕ0⟶𝐾) |
| 30 | 29 | feqmptd 6885 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 31 | 22, 23, 24, 26, 30 | offval2 7625 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥)))) |
| 32 | nn0ge0 12398 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
| 33 | 32 | iftrued 4481 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0)))) |
| 34 | nn0cn 12383 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 35 | 34 | subid1d 11453 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
| 36 | 35 | fveq2d 6821 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
| 37 | 36 | oveq2d 7357 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 38 | 33, 37 | eqtrd 2765 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 39 | 38 | mpteq2ia 5184 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥))) |
| 40 | 31, 39 | eqtr4di 2783 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
| 41 | 16, 20, 40 | 3eqtr4d 2775 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ifcif 4473 {csn 4574 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ∘f cof 7603 0cc0 10998 ≤ cle 11139 − cmin 11336 ℕ0cn0 12373 Basecbs 17112 .rcmulr 17154 ·𝑠 cvsca 17157 0gc0g 17335 .gcmg 18972 mulGrpcmgp 20051 Ringcrg 20144 algSccascl 21782 var1cv1 22081 Poly1cpl1 22082 coe1cco1 22083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-ascl 21785 df-psr 21839 df-mvr 21840 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-vr1 22086 df-ply1 22087 df-coe1 22088 |
| This theorem is referenced by: coe1sclmulfv 22190 deg1mul3 26041 uc1pmon1p 26077 |
| Copyright terms: Public domain | W3C validator |