![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1sclmul | Structured version Visualization version GIF version |
Description: Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1sclmul.u | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
coe1sclmul | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2733 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
6 | eqid 2733 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
7 | eqid 2733 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
11 | simp3 1139 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
12 | simp1 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
13 | simp2 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
14 | 0nn0 12483 | . . . 4 ⊢ 0 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul 21781 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
17 | coe1sclmul.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 21785 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
19 | 18 | 3adant3 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
20 | 19 | fvoveq1d 7426 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = (coe1‘((𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∙ 𝑌))) |
21 | nn0ex 12474 | . . . . 5 ⊢ ℕ0 ∈ V | |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
23 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
24 | fvexd 6903 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
25 | fconstmpt 5736 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
26 | 25 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
27 | eqid 2733 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
28 | 27, 8, 3, 2 | coe1f 21717 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
29 | 28 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌):ℕ0⟶𝐾) |
30 | 29 | feqmptd 6956 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
31 | 22, 23, 24, 26, 30 | offval2 7685 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥)))) |
32 | nn0ge0 12493 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
33 | 32 | iftrued 4535 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0)))) |
34 | nn0cn 12478 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
35 | 34 | subid1d 11556 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
36 | 35 | fveq2d 6892 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
37 | 36 | oveq2d 7420 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
38 | 33, 37 | eqtrd 2773 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)) = (𝑋 · ((coe1‘𝑌)‘𝑥))) |
39 | 38 | mpteq2ia 5250 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (𝑋 · ((coe1‘𝑌)‘𝑥))) |
40 | 31, 39 | eqtr4di 2791 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌)) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (𝑋 · ((coe1‘𝑌)‘(𝑥 − 0))), (0g‘𝑅)))) |
41 | 16, 20, 40 | 3eqtr4d 2783 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ifcif 4527 {csn 4627 class class class wbr 5147 ↦ cmpt 5230 × cxp 5673 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ∘f cof 7663 0cc0 11106 ≤ cle 11245 − cmin 11440 ℕ0cn0 12468 Basecbs 17140 .rcmulr 17194 ·𝑠 cvsca 17197 0gc0g 17381 .gcmg 18944 mulGrpcmgp 19979 Ringcrg 20047 algSccascl 21391 var1cv1 21682 Poly1cpl1 21683 coe1cco1 21684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-ofr 7666 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-subrg 20349 df-lmod 20461 df-lss 20531 df-ascl 21394 df-psr 21444 df-mvr 21445 df-mpl 21446 df-opsr 21448 df-psr1 21686 df-vr1 21687 df-ply1 21688 df-coe1 21689 |
This theorem is referenced by: coe1sclmulfv 21787 deg1mul3 25615 uc1pmon1p 25651 |
Copyright terms: Public domain | W3C validator |