| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sclmul2 | Structured version Visualization version GIF version | ||
| Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
| coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1sclmul.u | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sclmul2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 5 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 6 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 7 | eqid 2729 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 14 | 0nn0 12457 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul2 22162 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
| 17 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
| 18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 22167 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 20 | 19 | oveq2d 7403 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∙ (𝐴‘𝑋)) = (𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
| 21 | 20 | fveq2d 6862 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 22 | nn0ex 12448 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
| 24 | fvexd 6873 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
| 25 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
| 27 | 26, 8, 3, 2 | coe1f 22096 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
| 28 | 27 | feqmptd 6929 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 29 | 28 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 30 | fconstmpt 5700 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
| 31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
| 32 | 23, 24, 25, 29, 31 | offval2 7673 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋))) |
| 33 | nn0ge0 12467 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
| 34 | 33 | iftrued 4496 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋)) |
| 35 | nn0cn 12452 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 36 | 35 | subid1d 11522 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
| 37 | 36 | fveq2d 6862 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
| 38 | 37 | oveq1d 7402 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 39 | 34, 38 | eqtrd 2764 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 40 | 39 | mpteq2ia 5202 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 41 | 32, 40 | eqtr4di 2782 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
| 42 | 16, 21, 41 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 0cc0 11068 ≤ cle 11209 − cmin 11405 ℕ0cn0 12442 Basecbs 17179 .rcmulr 17221 ·𝑠 cvsca 17224 0gc0g 17402 .gcmg 18999 mulGrpcmgp 20049 Ringcrg 20142 algSccascl 21761 var1cv1 22060 Poly1cpl1 22061 coe1cco1 22062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |