| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sclmul2 | Structured version Visualization version GIF version | ||
| Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
| coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1sclmul.u | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sclmul2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 6 | eqid 2733 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 7 | eqid 2733 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 14 | 0nn0 12403 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul2 22191 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
| 17 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
| 18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 22196 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 20 | 19 | oveq2d 7368 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∙ (𝐴‘𝑋)) = (𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
| 21 | 20 | fveq2d 6832 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 22 | nn0ex 12394 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
| 24 | fvexd 6843 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
| 25 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
| 26 | eqid 2733 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
| 27 | 26, 8, 3, 2 | coe1f 22125 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
| 28 | 27 | feqmptd 6896 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 29 | 28 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
| 30 | fconstmpt 5681 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
| 31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
| 32 | 23, 24, 25, 29, 31 | offval2 7636 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋))) |
| 33 | nn0ge0 12413 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
| 34 | 33 | iftrued 4482 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋)) |
| 35 | nn0cn 12398 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 36 | 35 | subid1d 11468 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
| 37 | 36 | fveq2d 6832 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
| 38 | 37 | oveq1d 7367 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 39 | 34, 38 | eqtrd 2768 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 40 | 39 | mpteq2ia 5188 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋)) |
| 41 | 32, 40 | eqtr4di 2786 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
| 42 | 16, 21, 41 | 3eqtr4d 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4474 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 0cc0 11013 ≤ cle 11154 − cmin 11351 ℕ0cn0 12388 Basecbs 17122 .rcmulr 17164 ·𝑠 cvsca 17167 0gc0g 17345 .gcmg 18982 mulGrpcmgp 20060 Ringcrg 20153 algSccascl 21791 var1cv1 22089 Poly1cpl1 22090 coe1cco1 22091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |