![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1sclmul2 | Structured version Visualization version GIF version |
Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1sclmul.u | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
coe1sclmul2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2736 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
5 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
6 | eqid 2736 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
7 | eqid 2736 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
12 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
13 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
14 | 0nn0 12428 | . . . 4 ⊢ 0 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul2 21647 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
17 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 21652 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
20 | 19 | oveq2d 7373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∙ (𝐴‘𝑋)) = (𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
21 | 20 | fveq2d 6846 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
22 | nn0ex 12419 | . . . . 5 ⊢ ℕ0 ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
24 | fvexd 6857 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
25 | simpl2 1192 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
26 | eqid 2736 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
27 | 26, 8, 3, 2 | coe1f 21582 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
28 | 27 | feqmptd 6910 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
29 | 28 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
30 | fconstmpt 5694 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
32 | 23, 24, 25, 29, 31 | offval2 7637 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋))) |
33 | nn0ge0 12438 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
34 | 33 | iftrued 4494 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋)) |
35 | nn0cn 12423 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
36 | 35 | subid1d 11501 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
37 | 36 | fveq2d 6846 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
38 | 37 | oveq1d 7372 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
39 | 34, 38 | eqtrd 2776 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
40 | 39 | mpteq2ia 5208 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋)) |
41 | 32, 40 | eqtr4di 2794 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
42 | 16, 21, 41 | 3eqtr4d 2786 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ifcif 4486 {csn 4586 class class class wbr 5105 ↦ cmpt 5188 × cxp 5631 ‘cfv 6496 (class class class)co 7357 ∘f cof 7615 0cc0 11051 ≤ cle 11190 − cmin 11385 ℕ0cn0 12413 Basecbs 17083 .rcmulr 17134 ·𝑠 cvsca 17137 0gc0g 17321 .gcmg 18872 mulGrpcmgp 19896 Ringcrg 19964 algSccascl 21258 var1cv1 21547 Poly1cpl1 21548 coe1cco1 21549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-ascl 21261 df-psr 21311 df-mvr 21312 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-vr1 21552 df-ply1 21553 df-coe1 21554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |