Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1sclmul2 | Structured version Visualization version GIF version |
Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1sclmul.u | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
coe1sclmul2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | coe1sclmul.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1sclmul.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
5 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
6 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
7 | eqid 2738 | . . 3 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
8 | coe1sclmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1sclmul.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1sclmul.u | . . 3 ⊢ · = (.r‘𝑅) | |
11 | simp3 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
12 | simp1 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
13 | simp2 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
14 | 0nn0 12178 | . . . 4 ⊢ 0 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 0 ∈ ℕ0) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15 | coe1tmmul2 21357 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
17 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
18 | 2, 3, 4, 5, 6, 7, 17 | ply1scltm 21362 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
19 | 18 | 3adant3 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
20 | 19 | oveq2d 7271 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∙ (𝐴‘𝑋)) = (𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
21 | 20 | fveq2d 6760 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = (coe1‘(𝑌 ∙ (𝑋( ·𝑠 ‘𝑃)(0(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
22 | nn0ex 12169 | . . . . 5 ⊢ ℕ0 ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ℕ0 ∈ V) |
24 | fvexd 6771 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((coe1‘𝑌)‘𝑥) ∈ V) | |
25 | simpl2 1190 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
26 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
27 | 26, 8, 3, 2 | coe1f 21292 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶𝐾) |
28 | 27 | feqmptd 6819 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
29 | 28 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘𝑌) = (𝑥 ∈ ℕ0 ↦ ((coe1‘𝑌)‘𝑥))) |
30 | fconstmpt 5640 | . . . . 5 ⊢ (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋) | |
31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (ℕ0 × {𝑋}) = (𝑥 ∈ ℕ0 ↦ 𝑋)) |
32 | 23, 24, 25, 29, 31 | offval2 7531 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋))) |
33 | nn0ge0 12188 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
34 | 33 | iftrued 4464 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋)) |
35 | nn0cn 12173 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
36 | 35 | subid1d 11251 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → (𝑥 − 0) = 𝑥) |
37 | 36 | fveq2d 6760 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ((coe1‘𝑌)‘(𝑥 − 0)) = ((coe1‘𝑌)‘𝑥)) |
38 | 37 | oveq1d 7270 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
39 | 34, 38 | eqtrd 2778 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)) = (((coe1‘𝑌)‘𝑥) · 𝑋)) |
40 | 39 | mpteq2ia 5173 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ (((coe1‘𝑌)‘𝑥) · 𝑋)) |
41 | 32, 40 | eqtr4di 2797 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋})) = (𝑥 ∈ ℕ0 ↦ if(0 ≤ 𝑥, (((coe1‘𝑌)‘(𝑥 − 0)) · 𝑋), (0g‘𝑅)))) |
42 | 16, 21, 41 | 3eqtr4d 2788 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 0cc0 10802 ≤ cle 10941 − cmin 11135 ℕ0cn0 12163 Basecbs 16840 .rcmulr 16889 ·𝑠 cvsca 16892 0gc0g 17067 .gcmg 18615 mulGrpcmgp 19635 Ringcrg 19698 algSccascl 20969 var1cv1 21257 Poly1cpl1 21258 coe1cco1 21259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |