Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smadiadetlem3lem0 | Structured version Visualization version GIF version |
Description: Lemma 0 for smadiadetlem3 21369. (Contributed by AV, 12-Jan-2019.) |
Ref | Expression |
---|---|
marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
marep01ma.r | ⊢ 𝑅 ∈ CRing |
marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
madetminlem.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetminlem.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetminlem.t | ⊢ · = (.r‘𝑅) |
smadiadetlem.w | ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
smadiadetlem.z | ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
Ref | Expression |
---|---|
smadiadetlem3lem0 | ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.r | . 2 ⊢ 𝑅 ∈ CRing | |
2 | difssd 4039 | . . . . 5 ⊢ (𝐾 ∈ 𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
3 | 2 | anim2i 620 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑀 ∈ 𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
4 | 3 | adantr 485 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (𝑀 ∈ 𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
5 | marep01ma.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
6 | marep01ma.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
7 | 5, 6 | submabas 21279 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) |
8 | 4, 7 | syl 17 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) |
9 | simpr 489 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → 𝑄 ∈ 𝑊) | |
10 | smadiadetlem.w | . . 3 ⊢ 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
11 | smadiadetlem.z | . . 3 ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) | |
12 | madetminlem.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
13 | eqid 2759 | . . 3 ⊢ ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅) | |
14 | eqid 2759 | . . 3 ⊢ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) | |
15 | smadiadetlem.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
16 | 10, 11, 12, 13, 14, 15 | madetsmelbas2 21166 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑄 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
17 | 1, 8, 9, 16 | mp3an2i 1464 | 1 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∖ cdif 3856 ⊆ wss 3859 {csn 4523 ↦ cmpt 5113 ∘ ccom 5529 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 Basecbs 16542 .rcmulr 16625 0gc0g 16772 Σg cgsu 16773 SymGrpcsymg 18563 pmSgncpsgn 18685 mulGrpcmgp 19308 1rcur 19320 CRingccrg 19367 ℤRHomczrh 20270 Mat cmat 21108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-sup 8940 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-xnn0 12008 df-z 12022 df-dec 12139 df-uz 12284 df-rp 12432 df-fz 12941 df-fzo 13084 df-seq 13420 df-exp 13481 df-hash 13742 df-word 13915 df-lsw 13963 df-concat 13971 df-s1 13998 df-substr 14051 df-pfx 14081 df-splice 14160 df-reverse 14169 df-s2 14258 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-0g 16774 df-gsum 16775 df-prds 16780 df-pws 16782 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-submnd 18024 df-efmnd 18101 df-grp 18173 df-minusg 18174 df-mulg 18293 df-subg 18344 df-ghm 18424 df-gim 18467 df-cntz 18515 df-oppg 18542 df-symg 18564 df-pmtr 18638 df-psgn 18687 df-cmn 18976 df-mgp 19309 df-ur 19321 df-ring 19368 df-cring 19369 df-rnghom 19539 df-subrg 19602 df-sra 20013 df-rgmod 20014 df-cnfld 20168 df-zring 20240 df-zrh 20274 df-dsmm 20498 df-frlm 20513 df-mat 21109 |
This theorem is referenced by: smadiadetlem3lem1 21367 smadiadetlem3lem2 21368 |
Copyright terms: Public domain | W3C validator |