| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufd | Structured version Visualization version GIF version | ||
| Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33484, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 1arithufd.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| 1arithufd.3 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| 1arithufd | ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing) | |
| 2 | 1arithufd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 4 | 1arithufd.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 6 | 1arithufd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 1arithufd.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 1arithufd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 7, 8 | drngunit 20637 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| 10 | 9 | biimpar 477 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝑈) |
| 11 | 1, 3, 5, 10 | syl12anc 836 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝑈) |
| 12 | 1arithufd.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 14 | 11, 13 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 15 | 1arithufd.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 16 | 1arithufd.m | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 17 | 1arithufd.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑅 ∈ UFD) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑅 ∈ DivRing) | |
| 20 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑓))) | |
| 21 | 20 | rexbidv 3153 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) |
| 22 | 21 | cbvrabv 3407 | . . . . . 6 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| 23 | oveq2 7361 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔)) | |
| 24 | 23 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔))) |
| 25 | 24 | cbvrexvw 3208 | . . . . . 6 ⊢ (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)) |
| 26 | 22, 25 | rabbieq 3405 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)} |
| 27 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 28 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 29 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 30 | 6, 8, 7, 15, 16, 18, 19, 26, 27, 28, 29 | 1arithufdlem4 33494 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)}) |
| 31 | eqeq1 2733 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑋 = (𝑀 Σg 𝑓))) | |
| 32 | 31 | rexbidv 3153 | . . . . 5 ⊢ (𝑦 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 33 | 32 | elrab 3650 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 34 | 30, 33 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 35 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 36 | 14, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ‘cfv 6486 (class class class)co 7353 Word cword 14438 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 mulGrpcmgp 20043 Unitcui 20258 RPrimecrpm 20335 DivRingcdr 20632 UFDcufd 33485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-dju 9816 df-card 9854 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-rprm 20336 df-nzr 20416 df-subrg 20473 df-domn 20598 df-idom 20599 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-prmidl 33383 df-ufd 33486 |
| This theorem is referenced by: dfufd2 33497 |
| Copyright terms: Public domain | W3C validator |