| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufd | Structured version Visualization version GIF version | ||
| Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33497, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 1arithufd.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| 1arithufd.3 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| 1arithufd | ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing) | |
| 2 | 1arithufd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 4 | 1arithufd.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 6 | 1arithufd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 1arithufd.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 1arithufd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 7, 8 | drngunit 20647 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| 10 | 9 | biimpar 477 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝑈) |
| 11 | 1, 3, 5, 10 | syl12anc 836 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝑈) |
| 12 | 1arithufd.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 14 | 11, 13 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 15 | 1arithufd.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 16 | 1arithufd.m | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 17 | 1arithufd.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑅 ∈ UFD) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑅 ∈ DivRing) | |
| 20 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑓))) | |
| 21 | 20 | rexbidv 3156 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) |
| 22 | 21 | cbvrabv 3405 | . . . . . 6 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| 23 | oveq2 7354 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔)) | |
| 24 | 23 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔))) |
| 25 | 24 | cbvrexvw 3211 | . . . . . 6 ⊢ (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)) |
| 26 | 22, 25 | rabbieq 3403 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)} |
| 27 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 28 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 29 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 30 | 6, 8, 7, 15, 16, 18, 19, 26, 27, 28, 29 | 1arithufdlem4 33507 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)}) |
| 31 | eqeq1 2735 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑋 = (𝑀 Σg 𝑓))) | |
| 32 | 31 | rexbidv 3156 | . . . . 5 ⊢ (𝑦 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 33 | 32 | elrab 3647 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 34 | 30, 33 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 35 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 36 | 14, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ‘cfv 6481 (class class class)co 7346 Word cword 14417 Basecbs 17117 0gc0g 17340 Σg cgsu 17341 mulGrpcmgp 20056 Unitcui 20271 RPrimecrpm 20348 DivRingcdr 20642 UFDcufd 33498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-dju 9791 df-card 9829 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-0g 17342 df-gsum 17343 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rprm 20349 df-nzr 20426 df-subrg 20483 df-domn 20608 df-idom 20609 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-prmidl 33396 df-ufd 33499 |
| This theorem is referenced by: dfufd2 33510 |
| Copyright terms: Public domain | W3C validator |