Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufd Structured version   Visualization version   GIF version

Theorem 1arithufd 33508
Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33497, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufd.x (𝜑𝑋𝐵)
1arithufd.2 (𝜑 → ¬ 𝑋𝑈)
1arithufd.3 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufd (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))
Distinct variable groups:   0 ,𝑓   𝑓,𝑀   𝑃,𝑓   𝑅,𝑓   𝜑,𝑓   𝐵,𝑓   𝑈,𝑓   𝑓,𝑋

Proof of Theorem 1arithufd
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 1arithufd.x . . . . 5 (𝜑𝑋𝐵)
32adantr 480 . . . 4 ((𝜑𝑅 ∈ DivRing) → 𝑋𝐵)
4 1arithufd.3 . . . . 5 (𝜑𝑋0 )
54adantr 480 . . . 4 ((𝜑𝑅 ∈ DivRing) → 𝑋0 )
6 1arithufd.b . . . . . 6 𝐵 = (Base‘𝑅)
7 1arithufd.u . . . . . 6 𝑈 = (Unit‘𝑅)
8 1arithufd.0 . . . . . 6 0 = (0g𝑅)
96, 7, 8drngunit 20647 . . . . 5 (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))
109biimpar 477 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑋𝐵𝑋0 )) → 𝑋𝑈)
111, 3, 5, 10syl12anc 836 . . 3 ((𝜑𝑅 ∈ DivRing) → 𝑋𝑈)
12 1arithufd.2 . . . 4 (𝜑 → ¬ 𝑋𝑈)
1312adantr 480 . . 3 ((𝜑𝑅 ∈ DivRing) → ¬ 𝑋𝑈)
1411, 13pm2.21dd 195 . 2 ((𝜑𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))
15 1arithufd.p . . . . 5 𝑃 = (RPrime‘𝑅)
16 1arithufd.m . . . . 5 𝑀 = (mulGrp‘𝑅)
17 1arithufd.r . . . . . 6 (𝜑𝑅 ∈ UFD)
1817adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑅 ∈ UFD)
19 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑅 ∈ DivRing)
20 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑓)))
2120rexbidv 3156 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
2221cbvrabv 3405 . . . . . 6 {𝑦𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
23 oveq2 7354 . . . . . . . 8 (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔))
2423eqeq2d 2742 . . . . . . 7 (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔)))
2524cbvrexvw 3211 . . . . . 6 (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔))
2622, 25rabbieq 3403 . . . . 5 {𝑦𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥𝐵 ∣ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)}
272adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋𝐵)
2812adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑋𝑈)
294adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋0 )
306, 8, 7, 15, 16, 18, 19, 26, 27, 28, 291arithufdlem4 33507 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ {𝑦𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)})
31 eqeq1 2735 . . . . . 6 (𝑦 = 𝑋 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑋 = (𝑀 Σg 𝑓)))
3231rexbidv 3156 . . . . 5 (𝑦 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)))
3332elrab 3647 . . . 4 (𝑋 ∈ {𝑦𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)))
3430, 33sylib 218 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → (𝑋𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)))
3534simprd 495 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))
3614, 35pm2.61dan 812 1 (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  cfv 6481  (class class class)co 7346  Word cword 14417  Basecbs 17117  0gc0g 17340   Σg cgsu 17341  mulGrpcmgp 20056  Unitcui 20271  RPrimecrpm 20348  DivRingcdr 20642  UFDcufd 33498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-dju 9791  df-card 9829  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rprm 20349  df-nzr 20426  df-subrg 20483  df-domn 20608  df-idom 20609  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-sra 21105  df-rgmod 21106  df-lidl 21143  df-rsp 21144  df-prmidl 33396  df-ufd 33499
This theorem is referenced by:  dfufd2  33510
  Copyright terms: Public domain W3C validator