| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufd | Structured version Visualization version GIF version | ||
| Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element 𝑋 of a UFD 𝑅 can be written as a product of primes 𝑓. As shown in 1arithidom 33515, that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 1arithufd.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| 1arithufd.3 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| 1arithufd | ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing) | |
| 2 | 1arithufd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 4 | 1arithufd.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 6 | 1arithufd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | 1arithufd.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 1arithufd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 7, 8 | drngunit 20650 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| 10 | 9 | biimpar 477 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝑈) |
| 11 | 1, 3, 5, 10 | syl12anc 836 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝑈) |
| 12 | 1arithufd.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 14 | 11, 13 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 15 | 1arithufd.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 16 | 1arithufd.m | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 17 | 1arithufd.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑅 ∈ UFD) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑅 ∈ DivRing) | |
| 20 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑓))) | |
| 21 | 20 | rexbidv 3158 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) |
| 22 | 21 | cbvrabv 3419 | . . . . . 6 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| 23 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔)) | |
| 24 | 23 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔))) |
| 25 | 24 | cbvrexvw 3217 | . . . . . 6 ⊢ (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)) |
| 26 | 22, 25 | rabbieq 3417 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} = {𝑥 ∈ 𝐵 ∣ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)} |
| 27 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ 𝐵) |
| 28 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ¬ 𝑋 ∈ 𝑈) |
| 29 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ≠ 0 ) |
| 30 | 6, 8, 7, 15, 16, 18, 19, 26, 27, 28, 29 | 1arithufdlem4 33525 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → 𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)}) |
| 31 | eqeq1 2734 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑦 = (𝑀 Σg 𝑓) ↔ 𝑋 = (𝑀 Σg 𝑓))) | |
| 32 | 31 | rexbidv 3158 | . . . . 5 ⊢ (𝑦 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 33 | 32 | elrab 3662 | . . . 4 ⊢ (𝑋 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 34 | 30, 33 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓))) |
| 35 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ∈ DivRing) → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| 36 | 14, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ‘cfv 6514 (class class class)co 7390 Word cword 14485 Basecbs 17186 0gc0g 17409 Σg cgsu 17410 mulGrpcmgp 20056 Unitcui 20271 RPrimecrpm 20348 DivRingcdr 20645 UFDcufd 33516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-dju 9861 df-card 9899 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rprm 20349 df-nzr 20429 df-subrg 20486 df-domn 20611 df-idom 20612 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-prmidl 33414 df-ufd 33517 |
| This theorem is referenced by: dfufd2 33528 |
| Copyright terms: Public domain | W3C validator |