MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhmulg Structured version   Visualization version   GIF version

Theorem zrhmulg 20692
Description: Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
zrhval.l 𝐿 = (ℤRHom‘𝑅)
zrhval2.m · = (.g𝑅)
zrhval2.1 1 = (1r𝑅)
Assertion
Ref Expression
zrhmulg ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁 · 1 ))

Proof of Theorem zrhmulg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zrhval.l . . . 4 𝐿 = (ℤRHom‘𝑅)
2 zrhval2.m . . . 4 · = (.g𝑅)
3 zrhval2.1 . . . 4 1 = (1r𝑅)
41, 2, 3zrhval2 20691 . . 3 (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
54fveq1d 6770 . 2 (𝑅 ∈ Ring → (𝐿𝑁) = ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁))
6 oveq1 7275 . . 3 (𝑛 = 𝑁 → (𝑛 · 1 ) = (𝑁 · 1 ))
7 eqid 2739 . . 3 (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
8 ovex 7301 . . 3 (𝑁 · 1 ) ∈ V
96, 7, 8fvmpt 6869 . 2 (𝑁 ∈ ℤ → ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁) = (𝑁 · 1 ))
105, 9sylan9eq 2799 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cmpt 5161  cfv 6430  (class class class)co 7268  cz 12302  .gcmg 18681  1rcur 19718  Ringcrg 19764  ℤRHomczrh 20682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-seq 13703  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-grp 18561  df-minusg 18562  df-mulg 18682  df-subg 18733  df-ghm 18813  df-cmn 19369  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-rnghom 19940  df-subrg 20003  df-cnfld 20579  df-zring 20652  df-zrh 20686
This theorem is referenced by:  chrid  20712  chrdvds  20713  chrcong  20714  zrhpsgnelbas  20780  m2detleiblem1  21754  isarchiofld  31495  rearchi  31525  elrspunidl  31585  zrhnm  31898
  Copyright terms: Public domain W3C validator