MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coscl Structured version   Visualization version   GIF version

Theorem coscl 15230
Description: Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
coscl (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)

Proof of Theorem coscl
StepHypRef Expression
1 cosf 15228 . 2 cos:ℂ⟶ℂ
21ffvelrni 6608 1 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  cfv 6124  cc 10251  cosccos 15168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-ico 12470  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-fac 13355  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171  df-cos 15174
This theorem is referenced by:  tanval  15231  tancl  15232  coscld  15234  tanneg  15251  efmival  15256  sinadd  15267  cosadd  15268  tanaddlem  15269  sinsub  15271  cossub  15272  subsin  15274  sinmul  15275  cosmul  15276  addcos  15277  subcos  15278  sincossq  15279  sin2t  15280  cos2t  15281  cos2tsin  15282  demoivreALT  15304  sinhalfpilem  24616  sinmpi  24640  cosmpi  24641  sinppi  24642  cosppi  24643  efimpi  24644  sinhalfpip  24645  sinhalfpim  24646  coshalfpip  24647  coshalfpim  24648  asinsin  25033  acoscos  25034  atandmtan  25061  atantan  25064  sin2h  33943  cos2h  33944  tan2h  33945  dvtan  34004  itgsinexplem1  40965  itgsinexp  40966  dirkertrigeqlem1  41110  dirkertrigeqlem3  41112  seccl  43390  cotcl  43392  recsec  43396  reccot  43398  rectan  43399  onetansqsecsq  43401  cotsqcscsq  43402
  Copyright terms: Public domain W3C validator