Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sincl | Structured version Visualization version GIF version |
Description: Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
sincl | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinf 15932 | . 2 ⊢ sin:ℂ⟶ℂ | |
2 | 1 | ffvelcdmi 7016 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6479 ℂcc 10970 sincsin 15872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-ico 13186 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-fac 14089 df-hash 14146 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-sin 15878 |
This theorem is referenced by: tancl 15937 sincld 15938 tanneg 15956 sin0 15957 efmival 15961 sinadd 15972 cosadd 15973 tanaddlem 15974 sinsub 15976 cossub 15977 subsin 15979 sinmul 15980 cosmul 15981 addcos 15982 subcos 15983 sincossq 15984 sin2t 15985 cos2t 15986 cos2tsin 15987 demoivreALT 16009 sinhalfpilem 25726 sinmpi 25750 cosmpi 25751 sinppi 25752 cosppi 25753 efimpi 25754 sinhalfpip 25755 sinhalfpim 25756 coshalfpip 25757 coshalfpim 25758 sincos6thpi 25778 abssinper 25783 asinsin 26148 atandmtan 26176 atantan 26179 sin2h 35872 tan2h 35874 dvtan 35932 dvcosax 43803 itgsinexplem1 43831 itgsinexp 43832 csccl 46804 cotcl 46805 reccsc 46810 reccot 46811 rectan 46812 onetansqsecsq 46814 cotsqcscsq 46815 |
Copyright terms: Public domain | W3C validator |