MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcl Structured version   Visualization version   GIF version

Theorem efcl 15436
Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
efcl (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)

Proof of Theorem efcl
StepHypRef Expression
1 eff 15435 . 2 exp:ℂ⟶ℂ
21ffvelrni 6841 1 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  cfv 6343  cc 10533  expce 15415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-fac 13639  df-hash 13696  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421
This theorem is referenced by:  fprodefsum  15448  efne0  15450  efneg  15451  eff2  15452  efsub  15453  efexp  15454  ef4p  15466  sinf  15477  cosf  15478  tanval2  15486  tanval3  15487  resinval  15488  recosval  15489  resincl  15493  recoscl  15494  sinneg  15499  cosneg  15500  efival  15505  sinhval  15507  coshval  15508  absef  15550  efieq1re  15552  dveflem  24588  dvef  24589  dvsincos  24590  reeff1o  25048  efper  25078  pige3ALT  25118  sineq0  25122  efeq1  25126  efif1olem4  25143  efifo  25145  eff1olem  25146  eflogeq  25199  dvloglem  25245  logf1o2  25247  efopn  25255  cxpcl  25271  dvcxp1  25335  dvcxp2  25336  dvcncxp1  25338  sinasin  25481  asinsin  25484  efiatan2  25509  atantan  25515  efrlim  25561  efcld  31922  iprodefisumlem  33032  iprodefisum  33033  expgrowthi  40961  expgrowth  40963  sineq0ALT  41567  sinhpcosh  45196
  Copyright terms: Public domain W3C validator