MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcl Structured version   Visualization version   GIF version

Theorem efcl 16024
Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
efcl (𝐴 ∈ β„‚ β†’ (expβ€˜π΄) ∈ β„‚)

Proof of Theorem efcl
StepHypRef Expression
1 eff 16023 . 2 exp:β„‚βŸΆβ„‚
21ffvelcdmi 7076 1 (𝐴 ∈ β„‚ β†’ (expβ€˜π΄) ∈ β„‚)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  β€˜cfv 6534  β„‚cc 11105  expce 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-ico 13328  df-fz 13483  df-fzo 13626  df-fl 13755  df-seq 13965  df-exp 14026  df-fac 14232  df-hash 14289  df-shft 15012  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15631  df-ef 16009
This theorem is referenced by:  efcld  16025  fprodefsum  16037  efne0  16039  efneg  16040  eff2  16041  efsub  16042  efexp  16043  ef4p  16055  sinf  16066  cosf  16067  tanval2  16075  tanval3  16076  resinval  16077  recosval  16078  resincl  16082  recoscl  16083  sinneg  16088  cosneg  16089  efival  16094  sinhval  16096  coshval  16097  absef  16139  efieq1re  16141  dveflem  25835  dvef  25836  dvsincos  25837  reeff1o  26303  efper  26333  pige3ALT  26373  sineq0  26377  efeq1  26381  efif1olem4  26398  efifo  26400  eff1olem  26401  eflogeq  26455  dvloglem  26501  logf1o2  26503  efopn  26511  cxpcl  26527  dvcxp1  26593  dvcxp2  26594  dvcncxp1  26596  sinasin  26740  asinsin  26743  efiatan2  26768  atantan  26774  efrlim  26820  efrlimOLD  26821  iprodefisumlem  35206  iprodefisum  35207  expgrowthi  43606  expgrowth  43608  sineq0ALT  44212  sinhpcosh  47997
  Copyright terms: Public domain W3C validator