Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efcl | Structured version Visualization version GIF version |
Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
efcl | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eff 15800 | . 2 ⊢ exp:ℂ⟶ℂ | |
2 | 1 | ffvelrni 6969 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6437 ℂcc 10878 expce 15780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-ico 13094 df-fz 13249 df-fzo 13392 df-fl 13521 df-seq 13731 df-exp 13792 df-fac 13997 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 |
This theorem is referenced by: fprodefsum 15813 efne0 15815 efneg 15816 eff2 15817 efsub 15818 efexp 15819 ef4p 15831 sinf 15842 cosf 15843 tanval2 15851 tanval3 15852 resinval 15853 recosval 15854 resincl 15858 recoscl 15859 sinneg 15864 cosneg 15865 efival 15870 sinhval 15872 coshval 15873 absef 15915 efieq1re 15917 dveflem 25152 dvef 25153 dvsincos 25154 reeff1o 25615 efper 25645 pige3ALT 25685 sineq0 25689 efeq1 25693 efif1olem4 25710 efifo 25712 eff1olem 25713 eflogeq 25766 dvloglem 25812 logf1o2 25814 efopn 25822 cxpcl 25838 dvcxp1 25902 dvcxp2 25903 dvcncxp1 25905 sinasin 26048 asinsin 26051 efiatan2 26076 atantan 26082 efrlim 26128 efcld 32580 iprodefisumlem 33715 iprodefisum 33716 expgrowthi 41958 expgrowth 41960 sineq0ALT 42564 sinhpcosh 46453 |
Copyright terms: Public domain | W3C validator |