| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgprismgr4cyclex | Structured version Visualization version GIF version | ||
| Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgprismgr4cyclex | ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s5cli 14792 | . . 3 ⊢ 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∈ Word V | |
| 2 | s4cli 14791 | . . 3 ⊢ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ∈ Word V | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∈ Word V ∧ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ∈ Word V) |
| 4 | eqid 2733 | . . 3 ⊢ 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 | |
| 5 | eqid 2733 | . . 3 ⊢ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 | |
| 6 | eqid 2733 | . . 3 ⊢ (𝑁 gPetersenGr 1) = (𝑁 gPetersenGr 1) | |
| 7 | 4, 5, 6 | gpgprismgr4cycl0 48230 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉(Cycles‘(𝑁 gPetersenGr 1))〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ (♯‘〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) = 4)) |
| 8 | breq12 5098 | . . . . 5 ⊢ ((𝑓 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ∧ 𝑝 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉) → (𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ↔ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉(Cycles‘(𝑁 gPetersenGr 1))〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉)) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ ((𝑝 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ 𝑓 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) → (𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ↔ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉(Cycles‘(𝑁 gPetersenGr 1))〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉)) |
| 10 | fveqeq2 6837 | . . . . 5 ⊢ (𝑓 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 → ((♯‘𝑓) = 4 ↔ (♯‘〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) = 4)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑝 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ 𝑓 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) → ((♯‘𝑓) = 4 ↔ (♯‘〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) = 4)) |
| 12 | 9, 11 | anbi12d 632 | . . 3 ⊢ ((𝑝 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ 𝑓 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) → ((𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4) ↔ (〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉(Cycles‘(𝑁 gPetersenGr 1))〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ (♯‘〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) = 4))) |
| 13 | 12 | spc2egv 3550 | . 2 ⊢ ((〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∈ Word V ∧ 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ∈ Word V) → ((〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉(Cycles‘(𝑁 gPetersenGr 1))〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ∧ (♯‘〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉) = 4) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4))) |
| 14 | 3, 7, 13 | mpsyl 68 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 {cpr 4577 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 3c3 12188 4c4 12189 ℤ≥cuz 12738 ♯chash 14239 Word cword 14422 〈“cs4 14752 〈“cs5 14753 Cyclesccycls 29765 gPetersenGr cgpg 48164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-ceil 13699 df-mod 13776 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-s4 14759 df-s5 14760 df-dvds 16166 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-edgf 28969 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-usgr 29131 df-wlks 29580 df-trls 29671 df-pths 29694 df-cycls 29767 df-gpg 48165 |
| This theorem is referenced by: gpg5ngric 48252 |
| Copyright terms: Public domain | W3C validator |