Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgnbgrvtx1 Structured version   Visualization version   GIF version

Theorem gpgnbgrvtx1 48004
Description: The (open) neighborhood of an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgnbgrvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})

Proof of Theorem gpgnbgrvtx1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gpgnbgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
21a1i 11 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = (𝐺 NeighbVtx 𝑋))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
54eleq2i 2832 . . . . 5 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
6 gpgusgra 47985 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
75, 6sylan2b 594 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
83, 7eqeltrid 2844 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
9 simpl 482 . . 3 ((𝑋𝑉 ∧ (1st𝑋) = 1) → 𝑋𝑉)
10 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbusgrvtx 29355 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
138, 9, 12syl2an 596 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
14 simpl 482 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
15 simpr 484 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 1) → (1st𝑋) = 1)
1615adantl 481 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1st𝑋) = 1)
17 simpr 484 . . . . . . 7 ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
184, 3, 10, 11gpgvtxedg1 47995 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
1914, 16, 17, 18syl2an3an 1424 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
2019ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
214, 3, 10gpgvtx1 47982 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
2221simp1d 1143 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉)
2322adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉)
244, 3, 10, 11gpgedgvtx1 47993 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
2524simp1d 1143 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
2623, 25jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
27 eleq1 2828 . . . . . . . 8 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉))
28 preq2 4732 . . . . . . . . 9 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
2928eleq1d 2825 . . . . . . . 8 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
3027, 29anbi12d 632 . . . . . . 7 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
3126, 30syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
324, 3, 10gpgvtx0 47981 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
3332simp2d 1144 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (2nd𝑋)⟩ ∈ 𝑉)
3433adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨0, (2nd𝑋)⟩ ∈ 𝑉)
3524simp2d 1144 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺))
3634, 35jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
37 eleq1 2828 . . . . . . . 8 (𝑣 = ⟨0, (2nd𝑋)⟩ → (𝑣𝑉 ↔ ⟨0, (2nd𝑋)⟩ ∈ 𝑉))
38 preq2 4732 . . . . . . . . 9 (𝑣 = ⟨0, (2nd𝑋)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (2nd𝑋)⟩})
3938eleq1d 2825 . . . . . . . 8 (𝑣 = ⟨0, (2nd𝑋)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
4037, 39anbi12d 632 . . . . . . 7 (𝑣 = ⟨0, (2nd𝑋)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺))))
4136, 40syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨0, (2nd𝑋)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
4221simp3d 1145 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
4342adantrr 717 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
4443adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
45 eleq1 2828 . . . . . . . . . 10 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
4645adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
4744, 46mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → 𝑣𝑉)
4824simp3d 1145 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
50 preq2 4732 . . . . . . . . . . 11 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2825 . . . . . . . . . 10 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5251adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5349, 52mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
5447, 53jca 511 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
5554ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5631, 41, 553jaod 1431 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5720, 56impbid 212 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
58 preq2 4732 . . . . . 6 (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣})
5958eleq1d 2825 . . . . 5 (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
6059elrab 3691 . . . 4 (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
61 vex 3483 . . . . 5 𝑣 ∈ V
6261eltp 4687 . . . 4 (𝑣 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ↔ (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
6357, 60, 623bitr4g 314 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}))
6463eqrdv 2734 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
652, 13, 643eqtrd 2780 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  {crab 3435  {cpr 4626  {ctp 4628  cop 4630  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  0cc0 11151  1c1 11152   + caddc 11154  cmin 11488   / cdiv 11916  2c2 12317  3c3 12318  cuz 12874  ..^cfzo 13690  cceil 13827   mod cmo 13905  Vtxcvtx 29003  Edgcedg 29054  USGraphcusgr 29156   NeighbVtx cnbgr 29339   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-oadd 8506  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-sup 9478  df-inf 9479  df-dju 9937  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-rp 13031  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-mod 13906  df-hash 14366  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-edgf 28994  df-vtx 29005  df-iedg 29006  df-edg 29055  df-upgr 29089  df-umgr 29090  df-usgr 29158  df-nbgr 29340  df-gpg 47973
This theorem is referenced by:  gpg3nbgrvtx1  48007  gpg5nbgr3star  48010  gpg3kgrtriex  48018
  Copyright terms: Public domain W3C validator