Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgnbgrvtx1 Structured version   Visualization version   GIF version

Theorem gpgnbgrvtx1 47918
Description: The (open) neighborhood of a vertex of the second kind in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgnbgrvtx1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})

Proof of Theorem gpgnbgrvtx1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gpgnbgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
21a1i 11 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = (𝐺 NeighbVtx 𝑋))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
54eleq2i 2836 . . . . 5 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
6 gpgusgra 47901 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
75, 6sylan2b 593 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
83, 7eqeltrid 2848 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
9 simpl 482 . . 3 ((𝑋𝑉 ∧ (1st𝑋) = 1) → 𝑋𝑉)
10 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2740 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbusgrvtx 29403 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
138, 9, 12syl2an 595 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
14 simpl 482 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
15 simpr 484 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 1) → (1st𝑋) = 1)
1615adantl 481 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (1st𝑋) = 1)
17 simpr 484 . . . . . . 7 ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
184, 3, 10, 11gpgvtxedg1 47909 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 1 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
1914, 16, 17, 18syl2an3an 1422 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
2019ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
214, 3, 10gpgvtx1 47899 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
2221simp1d 1142 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉)
2322adantrr 716 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉)
244, 3, 10, 11gpgedgvtx1 47907 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
2524simp1d 1142 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
2623, 25jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
27 eleq1 2832 . . . . . . . 8 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉))
28 preq2 4759 . . . . . . . . 9 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
2928eleq1d 2829 . . . . . . . 8 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
3027, 29anbi12d 631 . . . . . . 7 (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
3126, 30syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
324, 3, 10gpgvtx0 47898 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
3332simp2d 1143 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (2nd𝑋)⟩ ∈ 𝑉)
3433adantrr 716 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨0, (2nd𝑋)⟩ ∈ 𝑉)
3524simp2d 1143 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺))
3634, 35jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
37 eleq1 2832 . . . . . . . 8 (𝑣 = ⟨0, (2nd𝑋)⟩ → (𝑣𝑉 ↔ ⟨0, (2nd𝑋)⟩ ∈ 𝑉))
38 preq2 4759 . . . . . . . . 9 (𝑣 = ⟨0, (2nd𝑋)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (2nd𝑋)⟩})
3938eleq1d 2829 . . . . . . . 8 (𝑣 = ⟨0, (2nd𝑋)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
4037, 39anbi12d 631 . . . . . . 7 (𝑣 = ⟨0, (2nd𝑋)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (2nd𝑋)⟩} ∈ (Edg‘𝐺))))
4136, 40syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨0, (2nd𝑋)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
4221simp3d 1144 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
4342adantrr 716 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
4443adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉)
45 eleq1 2832 . . . . . . . . . 10 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
4645adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ↔ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
4744, 46mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → 𝑣𝑉)
4824simp3d 1144 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
50 preq2 4759 . . . . . . . . . . 11 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2829 . . . . . . . . . 10 (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5251adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5349, 52mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
5447, 53jca 511 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) ∧ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
5554ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5631, 41, 553jaod 1429 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5720, 56impbid 212 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)))
58 preq2 4759 . . . . . 6 (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣})
5958eleq1d 2829 . . . . 5 (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
6059elrab 3708 . . . 4 (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
61 vex 3492 . . . . 5 𝑣 ∈ V
6261eltp 4712 . . . 4 (𝑣 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ↔ (𝑣 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∨ 𝑣 = ⟨0, (2nd𝑋)⟩ ∨ 𝑣 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
6357, 60, 623bitr4g 314 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}))
6463eqrdv 2738 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
652, 13, 643eqtrd 2784 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  {crab 3443  {cpr 4650  {ctp 4652  cop 4654  cfv 6576  (class class class)co 7451  1st c1st 8031  2nd c2nd 8032  0cc0 11187  1c1 11188   + caddc 11190  cmin 11524   / cdiv 11952  2c2 12353  3c3 12354  cuz 12910  ..^cfzo 13722  cceil 13858   mod cmo 13936  Vtxcvtx 29051  Edgcedg 29102  USGraphcusgr 29204   NeighbVtx cnbgr 29387   gPetersenGr cgpg 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5304  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4933  df-int 4972  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-1o 8525  df-2o 8526  df-oadd 8529  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-fin 9010  df-sup 9514  df-inf 9515  df-dju 9973  df-card 10011  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-7 12366  df-8 12367  df-9 12368  df-n0 12559  df-xnn0 12632  df-z 12646  df-dec 12766  df-uz 12911  df-rp 13067  df-ico 13424  df-fz 13579  df-fzo 13723  df-fl 13859  df-ceil 13860  df-mod 13937  df-hash 14397  df-dvds 16320  df-struct 17214  df-slot 17249  df-ndx 17261  df-base 17279  df-edgf 29042  df-vtx 29053  df-iedg 29054  df-edg 29103  df-upgr 29137  df-umgr 29138  df-usgr 29206  df-nbgr 29388  df-gpg 47890
This theorem is referenced by:  gpg3nbgrvtx1  47921  gpg5nbgr3star  47924
  Copyright terms: Public domain W3C validator