| Step | Hyp | Ref
| Expression |
| 1 | | gpgnbgr.u |
. . 3
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| 2 | 1 | a1i 11 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = (𝐺 NeighbVtx 𝑋)) |
| 3 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 4 | | gpgnbgr.j |
. . . . . 6
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 5 | 4 | eleq2i 2832 |
. . . . 5
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 6 | | gpgusgra 47985 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 7 | 5, 6 | sylan2b 594 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 8 | 3, 7 | eqeltrid 2844 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝐺 ∈ USGraph) |
| 9 | | simpl 482 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → 𝑋 ∈ 𝑉) |
| 10 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | | eqid 2736 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 12 | 10, 11 | nbusgrvtx 29355 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)}) |
| 13 | 8, 9, 12 | syl2an 596 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝐺 NeighbVtx 𝑋) = {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)}) |
| 14 | | simpl 482 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽)) |
| 15 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → (1st
‘𝑋) =
1) |
| 16 | 15 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (1st
‘𝑋) =
1) |
| 17 | | simpr 484 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺)) |
| 18 | 4, 3, 10, 11 | gpgvtxedg1 47995 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 1 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) |
| 19 | 14, 16, 17, 18 | syl2an3an 1424 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) |
| 20 | 19 | ex 412 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉))) |
| 21 | 4, 3, 10 | gpgvtx1 47982 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 22 | 21 | simp1d 1143 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉) |
| 23 | 22 | adantrr 717 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ∈ 𝑉) |
| 24 | 4, 3, 10, 11 | gpgedgvtx1 47993 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({𝑋, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺) ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺) ∧ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
| 25 | 24 | simp1d 1143 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {𝑋, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)) |
| 26 | 23, 25 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ {𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
| 27 | | eleq1 2828 |
. . . . . . . 8
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ↔ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 28 | | preq2 4732 |
. . . . . . . . 9
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {𝑋, 𝑣} = {𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉}) |
| 29 | 28 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
| 30 | 27, 29 | anbi12d 632 |
. . . . . . 7
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ {𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)))) |
| 31 | 26, 30 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
| 32 | 4, 3, 10 | gpgvtx0 47981 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉)) |
| 33 | 32 | simp2d 1144 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈0, (2nd
‘𝑋)〉 ∈
𝑉) |
| 34 | 33 | adantrr 717 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈0,
(2nd ‘𝑋)〉 ∈ 𝑉) |
| 35 | 24 | simp2d 1144 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {𝑋, 〈0, (2nd
‘𝑋)〉} ∈
(Edg‘𝐺)) |
| 36 | 34, 35 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (〈0,
(2nd ‘𝑋)〉 ∈ 𝑉 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺))) |
| 37 | | eleq1 2828 |
. . . . . . . 8
⊢ (𝑣 = 〈0, (2nd
‘𝑋)〉 →
(𝑣 ∈ 𝑉 ↔ 〈0, (2nd
‘𝑋)〉 ∈
𝑉)) |
| 38 | | preq2 4732 |
. . . . . . . . 9
⊢ (𝑣 = 〈0, (2nd
‘𝑋)〉 →
{𝑋, 𝑣} = {𝑋, 〈0, (2nd ‘𝑋)〉}) |
| 39 | 38 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑣 = 〈0, (2nd
‘𝑋)〉 →
({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺))) |
| 40 | 37, 39 | anbi12d 632 |
. . . . . . 7
⊢ (𝑣 = 〈0, (2nd
‘𝑋)〉 →
((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (〈0, (2nd
‘𝑋)〉 ∈
𝑉 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺)))) |
| 41 | 36, 40 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝑣 = 〈0, (2nd
‘𝑋)〉 →
(𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
| 42 | 21 | simp3d 1145 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉) |
| 43 | 42 | adantrr 717 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ∈ 𝑉) |
| 44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉) |
| 45 | | eleq1 2828 |
. . . . . . . . . 10
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ↔ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 46 | 45 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ↔ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
| 47 | 44, 46 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → 𝑣 ∈ 𝑉) |
| 48 | 24 | simp3d 1145 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {𝑋, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)) |
| 49 | 48 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)) |
| 50 | | preq2 4732 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {𝑋, 𝑣} = {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉}) |
| 51 | 50 | eleq1d 2825 |
. . . . . . . . . 10
⊢ (𝑣 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
| 52 | 51 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
| 53 | 49, 52 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → {𝑋, 𝑣} ∈ (Edg‘𝐺)) |
| 54 | 47, 53 | jca 511 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) ∧ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
| 55 | 54 | ex 412 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝑣 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
| 56 | 31, 41, 55 | 3jaod 1431 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ((𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
| 57 | 20, 56 | impbid 212 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉))) |
| 58 | | preq2 4732 |
. . . . . 6
⊢ (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣}) |
| 59 | 58 | eleq1d 2825 |
. . . . 5
⊢ (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
| 60 | 59 | elrab 3691 |
. . . 4
⊢ (𝑣 ∈ {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
| 61 | | vex 3483 |
. . . . 5
⊢ 𝑣 ∈ V |
| 62 | 61 | eltp 4687 |
. . . 4
⊢ (𝑣 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ↔ (𝑣 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑣 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) |
| 63 | 57, 60, 62 | 3bitr4g 314 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (𝑣 ∈ {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉})) |
| 64 | 63 | eqrdv 2734 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
| 65 | 2, 13, 64 | 3eqtrd 2780 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |