Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgnbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpgnbgrvtx0 48038
Description: The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgnbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})

Proof of Theorem gpgnbgrvtx0
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gpgnbgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
21a1i 11 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = (𝐺 NeighbVtx 𝑋))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
54eleq2i 2820 . . . . 5 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
6 gpgusgra 48021 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
75, 6sylan2b 594 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
83, 7eqeltrid 2832 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
9 simpl 482 . . 3 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
10 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbusgrvtx 29251 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
138, 9, 12syl2an 596 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
14 simpl 482 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
15 simpr 484 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 0) → (1st𝑋) = 0)
1615adantl 481 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1st𝑋) = 0)
17 simpr 484 . . . . . . 7 ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
184, 3, 10, 11gpgvtxedg0 48027 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
1914, 16, 17, 18syl2an3an 1424 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
2019ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
214, 3, 10gpgvtx0 48017 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
2221simp1d 1142 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
2322adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
244, 3, 10, 11gpgedgvtx0 48025 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
2524simp1d 1142 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
2623, 25jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
27 eleq1 2816 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉))
28 preq2 4694 . . . . . . . . 9 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
2928eleq1d 2813 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
3027, 29anbi12d 632 . . . . . . 7 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
3126, 30syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
324, 3, 10gpgvtx1 48018 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
3332simp2d 1143 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3433adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3524simp2d 1143 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))
3634, 35jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
37 eleq1 2816 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ↔ ⟨1, (2nd𝑋)⟩ ∈ 𝑉))
38 preq2 4694 . . . . . . . . 9 (𝑣 = ⟨1, (2nd𝑋)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (2nd𝑋)⟩})
3938eleq1d 2813 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
4037, 39anbi12d 632 . . . . . . 7 (𝑣 = ⟨1, (2nd𝑋)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))))
4136, 40syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
4221simp3d 1144 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4342adantrr 717 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4443adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
45 eleq1 2816 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4645adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4744, 46mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → 𝑣𝑉)
4824simp3d 1144 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
50 preq2 4694 . . . . . . . . . . 11 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
5150eleq1d 2813 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5251adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5349, 52mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
5447, 53jca 511 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
5554ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5631, 41, 553jaod 1431 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5720, 56impbid 212 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
58 preq2 4694 . . . . . 6 (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣})
5958eleq1d 2813 . . . . 5 (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
6059elrab 3656 . . . 4 (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
61 vex 3448 . . . . 5 𝑣 ∈ V
6261eltp 4649 . . . 4 (𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
6357, 60, 623bitr4g 314 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
6463eqrdv 2727 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
652, 13, 643eqtrd 2768 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  {crab 3402  {cpr 4587  {ctp 4589  cop 4591  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381   / cdiv 11811  2c2 12217  3c3 12218  cuz 12769  ..^cfzo 13591  cceil 13729   mod cmo 13807  Vtxcvtx 28899  Edgcedg 28950  USGraphcusgr 29052   NeighbVtx cnbgr 29235   gPetersenGr cgpg 48004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-hash 14272  df-dvds 16199  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28892  df-vtx 28901  df-iedg 28902  df-edg 28951  df-upgr 28985  df-umgr 28986  df-usgr 29054  df-nbgr 29236  df-gpg 48005
This theorem is referenced by:  gpg3nbgrvtx0  48040  gpg3nbgrvtx0ALT  48041  gpg5nbgrvtx03star  48044  pgnbgreunbgrlem3  48081  pgnbgreunbgrlem6  48087
  Copyright terms: Public domain W3C validator