Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgnbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpgnbgrvtx0 48055
Description: The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgnbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})

Proof of Theorem gpgnbgrvtx0
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gpgnbgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
21a1i 11 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = (𝐺 NeighbVtx 𝑋))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
54eleq2i 2821 . . . . 5 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
6 gpgusgra 48038 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
75, 6sylan2b 594 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
83, 7eqeltrid 2833 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
9 simpl 482 . . 3 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
10 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbusgrvtx 29281 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
138, 9, 12syl2an 596 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
14 simpl 482 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
15 simpr 484 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 0) → (1st𝑋) = 0)
1615adantl 481 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1st𝑋) = 0)
17 simpr 484 . . . . . . 7 ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
184, 3, 10, 11gpgvtxedg0 48044 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
1914, 16, 17, 18syl2an3an 1424 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
2019ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
214, 3, 10gpgvtx0 48034 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
2221simp1d 1142 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
2322adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
244, 3, 10, 11gpgedgvtx0 48042 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
2524simp1d 1142 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
2623, 25jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
27 eleq1 2817 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉))
28 preq2 4700 . . . . . . . . 9 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
2928eleq1d 2814 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
3027, 29anbi12d 632 . . . . . . 7 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
3126, 30syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
324, 3, 10gpgvtx1 48035 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
3332simp2d 1143 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3433adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3524simp2d 1143 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))
3634, 35jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
37 eleq1 2817 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ↔ ⟨1, (2nd𝑋)⟩ ∈ 𝑉))
38 preq2 4700 . . . . . . . . 9 (𝑣 = ⟨1, (2nd𝑋)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (2nd𝑋)⟩})
3938eleq1d 2814 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
4037, 39anbi12d 632 . . . . . . 7 (𝑣 = ⟨1, (2nd𝑋)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))))
4136, 40syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
4221simp3d 1144 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4342adantrr 717 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4443adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
45 eleq1 2817 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4645adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4744, 46mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → 𝑣𝑉)
4824simp3d 1144 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
50 preq2 4700 . . . . . . . . . . 11 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
5150eleq1d 2814 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5251adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5349, 52mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
5447, 53jca 511 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
5554ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5631, 41, 553jaod 1431 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5720, 56impbid 212 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
58 preq2 4700 . . . . . 6 (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣})
5958eleq1d 2814 . . . . 5 (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
6059elrab 3661 . . . 4 (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
61 vex 3454 . . . . 5 𝑣 ∈ V
6261eltp 4655 . . . 4 (𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
6357, 60, 623bitr4g 314 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
6463eqrdv 2728 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
652, 13, 643eqtrd 2769 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  {crab 3408  {cpr 4593  {ctp 4595  cop 4597  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  0cc0 11074  1c1 11075   + caddc 11077  cmin 11411   / cdiv 11841  2c2 12242  3c3 12243  cuz 12799  ..^cfzo 13621  cceil 13759   mod cmo 13837  Vtxcvtx 28929  Edgcedg 28980  USGraphcusgr 29082   NeighbVtx cnbgr 29265   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-hash 14302  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-vtx 28931  df-iedg 28932  df-edg 28981  df-upgr 29015  df-umgr 29016  df-usgr 29084  df-nbgr 29266  df-gpg 48022
This theorem is referenced by:  gpg3nbgrvtx0  48057  gpg3nbgrvtx0ALT  48058  gpg5nbgrvtx03star  48061  pgnbgreunbgrlem3  48098  pgnbgreunbgrlem6  48104
  Copyright terms: Public domain W3C validator