Step | Hyp | Ref
| Expression |
1 | | gpgnbgr.u |
. . 3
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
2 | 1 | a1i 11 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = (𝐺 NeighbVtx 𝑋)) |
3 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
4 | | gpgnbgr.j |
. . . . . 6
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
5 | 4 | eleq2i 2836 |
. . . . 5
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
6 | | gpgusgra 47901 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
7 | 5, 6 | sylan2b 593 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
8 | 3, 7 | eqeltrid 2848 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝐺 ∈ USGraph) |
9 | | simpl 482 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0) → 𝑋 ∈ 𝑉) |
10 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
11 | | eqid 2740 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
12 | 10, 11 | nbusgrvtx 29403 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)}) |
13 | 8, 9, 12 | syl2an 595 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝐺 NeighbVtx 𝑋) = {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)}) |
14 | | simpl 482 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽)) |
15 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0) → (1st
‘𝑋) =
0) |
16 | 15 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (1st
‘𝑋) =
0) |
17 | | simpr 484 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺)) |
18 | 4, 3, 10, 11 | gpgvtxedg0 47908 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 0 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) |
19 | 14, 16, 17, 18 | syl2an3an 1422 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) |
20 | 19 | ex 412 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉))) |
21 | 4, 3, 10 | gpgvtx0 47898 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉)) |
22 | 21 | simp1d 1142 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉) |
23 | 22 | adantrr 716 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
𝑉) |
24 | 4, 3, 10, 11 | gpgedgvtx0 47906 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∈ (Edg‘𝐺) ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺) ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
25 | 24 | simp1d 1142 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {𝑋, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∈ (Edg‘𝐺)) |
26 | 23, 25 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
𝑉 ∧ {𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
27 | | eleq1 2832 |
. . . . . . . 8
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ↔ 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉)) |
28 | | preq2 4759 |
. . . . . . . . 9
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → {𝑋, 𝑣} = {𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉}) |
29 | 28 | eleq1d 2829 |
. . . . . . . 8
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
30 | 27, 29 | anbi12d 631 |
. . . . . . 7
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ {𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ (Edg‘𝐺)))) |
31 | 26, 30 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
32 | 4, 3, 10 | gpgvtx1 47899 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) |
33 | 32 | simp2d 1143 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈1, (2nd
‘𝑋)〉 ∈
𝑉) |
34 | 33 | adantrr 716 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈1,
(2nd ‘𝑋)〉 ∈ 𝑉) |
35 | 24 | simp2d 1143 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {𝑋, 〈1, (2nd
‘𝑋)〉} ∈
(Edg‘𝐺)) |
36 | 34, 35 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (〈1,
(2nd ‘𝑋)〉 ∈ 𝑉 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺))) |
37 | | eleq1 2832 |
. . . . . . . 8
⊢ (𝑣 = 〈1, (2nd
‘𝑋)〉 →
(𝑣 ∈ 𝑉 ↔ 〈1, (2nd
‘𝑋)〉 ∈
𝑉)) |
38 | | preq2 4759 |
. . . . . . . . 9
⊢ (𝑣 = 〈1, (2nd
‘𝑋)〉 →
{𝑋, 𝑣} = {𝑋, 〈1, (2nd ‘𝑋)〉}) |
39 | 38 | eleq1d 2829 |
. . . . . . . 8
⊢ (𝑣 = 〈1, (2nd
‘𝑋)〉 →
({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺))) |
40 | 37, 39 | anbi12d 631 |
. . . . . . 7
⊢ (𝑣 = 〈1, (2nd
‘𝑋)〉 →
((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (〈1, (2nd
‘𝑋)〉 ∈
𝑉 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ (Edg‘𝐺)))) |
41 | 36, 40 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝑣 = 〈1, (2nd
‘𝑋)〉 →
(𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
42 | 21 | simp3d 1144 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉) |
43 | 42 | adantrr 716 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ 𝑉) |
44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ 𝑉) |
45 | | eleq1 2832 |
. . . . . . . . . 10
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → (𝑣 ∈ 𝑉 ↔ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉)) |
46 | 45 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ↔ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉)) |
47 | 44, 46 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → 𝑣 ∈ 𝑉) |
48 | 24 | simp3d 1144 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {𝑋, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∈
(Edg‘𝐺)) |
49 | 48 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → {𝑋, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∈
(Edg‘𝐺)) |
50 | | preq2 4759 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → {𝑋, 𝑣} = {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉}) |
51 | 50 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑣 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
52 | 51 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
53 | 49, 52 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → {𝑋, 𝑣} ∈ (Edg‘𝐺)) |
54 | 47, 53 | jca 511 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) ∧ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
55 | 54 | ex 412 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝑣 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
56 | 31, 41, 55 | 3jaod 1429 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉) → (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))) |
57 | 20, 56 | impbid 212 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉))) |
58 | | preq2 4759 |
. . . . . 6
⊢ (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣}) |
59 | 58 | eleq1d 2829 |
. . . . 5
⊢ (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
60 | 59 | elrab 3708 |
. . . 4
⊢ (𝑣 ∈ {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣 ∈ 𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) |
61 | | vex 3492 |
. . . . 5
⊢ 𝑣 ∈ V |
62 | 61 | eltp 4712 |
. . . 4
⊢ (𝑣 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ↔ (𝑣 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑣 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑣 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) |
63 | 57, 60, 62 | 3bitr4g 314 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (𝑣 ∈ {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉})) |
64 | 63 | eqrdv 2738 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {𝑦 ∈ 𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) |
65 | 2, 13, 64 | 3eqtrd 2784 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |