Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgnbgrvtx0 Structured version   Visualization version   GIF version

Theorem gpgnbgrvtx0 48236
Description: The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgnbgrvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})

Proof of Theorem gpgnbgrvtx0
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gpgnbgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
21a1i 11 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = (𝐺 NeighbVtx 𝑋))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
54eleq2i 2825 . . . . 5 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
6 gpgusgra 48219 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
75, 6sylan2b 594 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
83, 7eqeltrid 2837 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
9 simpl 482 . . 3 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
10 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
1210, 11nbusgrvtx 29347 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
138, 9, 12syl2an 596 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝐺 NeighbVtx 𝑋) = {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)})
14 simpl 482 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
15 simpr 484 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 0) → (1st𝑋) = 0)
1615adantl 481 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1st𝑋) = 0)
17 simpr 484 . . . . . . 7 ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
184, 3, 10, 11gpgvtxedg0 48225 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st𝑋) = 0 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
1914, 16, 17, 18syl2an3an 1424 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
2019ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
214, 3, 10gpgvtx0 48215 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
2221simp1d 1142 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
2322adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉)
244, 3, 10, 11gpgedgvtx0 48223 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺) ∧ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
2524simp1d 1142 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
2623, 25jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
27 eleq1 2821 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉))
28 preq2 4688 . . . . . . . . 9 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
2928eleq1d 2818 . . . . . . . 8 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
3027, 29anbi12d 632 . . . . . . 7 (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ {𝑋, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
3126, 30syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
324, 3, 10gpgvtx1 48216 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ 𝑉))
3332simp2d 1143 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3433adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ∈ 𝑉)
3524simp2d 1143 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))
3634, 35jca 511 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
37 eleq1 2821 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ↔ ⟨1, (2nd𝑋)⟩ ∈ 𝑉))
38 preq2 4688 . . . . . . . . 9 (𝑣 = ⟨1, (2nd𝑋)⟩ → {𝑋, 𝑣} = {𝑋, ⟨1, (2nd𝑋)⟩})
3938eleq1d 2818 . . . . . . . 8 (𝑣 = ⟨1, (2nd𝑋)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺)))
4037, 39anbi12d 632 . . . . . . 7 (𝑣 = ⟨1, (2nd𝑋)⟩ → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (⟨1, (2nd𝑋)⟩ ∈ 𝑉 ∧ {𝑋, ⟨1, (2nd𝑋)⟩} ∈ (Edg‘𝐺))))
4136, 40syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨1, (2nd𝑋)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
4221simp3d 1144 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4342adantrr 717 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
4443adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)
45 eleq1 2821 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4645adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ↔ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
4744, 46mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → 𝑣𝑉)
4824simp3d 1144 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
4948adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺))
50 preq2 4688 . . . . . . . . . . 11 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {𝑋, 𝑣} = {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
5150eleq1d 2818 . . . . . . . . . 10 (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5251adantl 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → ({𝑋, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑋, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5349, 52mpbird 257 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → {𝑋, 𝑣} ∈ (Edg‘𝐺))
5447, 53jca 511 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) ∧ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
5554ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5631, 41, 553jaod 1431 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩) → (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺))))
5720, 56impbid 212 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)) ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)))
58 preq2 4688 . . . . . 6 (𝑦 = 𝑣 → {𝑋, 𝑦} = {𝑋, 𝑣})
5958eleq1d 2818 . . . . 5 (𝑦 = 𝑣 → ({𝑋, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
6059elrab 3643 . . . 4 (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ (𝑣𝑉 ∧ {𝑋, 𝑣} ∈ (Edg‘𝐺)))
61 vex 3441 . . . . 5 𝑣 ∈ V
6261eltp 4643 . . . 4 (𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ↔ (𝑣 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∨ 𝑣 = ⟨1, (2nd𝑋)⟩ ∨ 𝑣 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
6357, 60, 623bitr4g 314 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (𝑣 ∈ {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} ↔ 𝑣 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
6463eqrdv 2731 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {𝑦𝑉 ∣ {𝑋, 𝑦} ∈ (Edg‘𝐺)} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
652, 13, 643eqtrd 2772 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  {crab 3396  {cpr 4579  {ctp 4581  cop 4583  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046  USGraphcusgr 29148   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-upgr 29081  df-umgr 29082  df-usgr 29150  df-nbgr 29332  df-gpg 48203
This theorem is referenced by:  gpg3nbgrvtx0  48238  gpg3nbgrvtx0ALT  48239  gpg5nbgrvtx03star  48242  pgnbgreunbgrlem3  48280  pgnbgreunbgrlem6  48286
  Copyright terms: Public domain W3C validator