Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sincld | Structured version Visualization version GIF version |
Description: Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
sincld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
sincld | ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sincl 15527 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6335 ℂcc 10573 sincsin 15465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-ico 12785 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-fac 13684 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 |
This theorem is referenced by: retanhcl 15560 tanhlt1 15561 tanadd 15568 addsin 15571 sincossq 15577 sinkpi 25213 coseq1 25216 efif1olem4 25236 heron 25523 sin2h 35349 dvtan 35409 sineq0ALT 42038 sinmulcos 42895 dvcosre 42942 dvasinbx 42950 dvcosax 42956 itgsin0pilem1 42980 ibliccsinexp 42981 iblioosinexp 42983 itgsinexplem1 42984 itgsinexp 42985 itgcoscmulx 42999 itgsincmulx 43004 wallispilem2 43096 dirker2re 43122 dirkerdenne0 43123 dirkerper 43126 dirkertrigeqlem2 43129 dirkertrigeqlem3 43130 dirkeritg 43132 dirkercncflem2 43134 dirkercncflem4 43136 fourierdlem39 43176 fourierdlem43 43180 fourierdlem44 43181 fourierdlem56 43192 fourierdlem57 43193 fourierdlem58 43194 fourierdlem62 43198 fourierdlem68 43204 fourierdlem72 43208 fourierdlem73 43209 fourierdlem76 43212 fourierdlem80 43216 fourierdlem103 43239 fourierdlem104 43240 sqwvfoura 43258 sqwvfourb 43259 fouriersw 43261 sinh-conventional 45678 |
Copyright terms: Public domain | W3C validator |