MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincld Structured version   Visualization version   GIF version

Theorem sincld 16039
Description: Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
sincld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sincld (𝜑 → (sin‘𝐴) ∈ ℂ)

Proof of Theorem sincld
StepHypRef Expression
1 sincld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sincl 16035 . 2 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (sin‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  cc 11004  sincsin 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976
This theorem is referenced by:  retanhcl  16068  tanhlt1  16069  tanadd  16076  addsin  16079  sincossq  16085  sinkpi  26458  coseq1  26461  efif1olem4  26481  heron  26775  sin2h  37658  dvtan  37718  sineq0ALT  44977  sinmulcos  45911  dvcosre  45958  dvasinbx  45966  dvcosax  45972  itgsin0pilem1  45996  ibliccsinexp  45997  iblioosinexp  45999  itgsinexplem1  46000  itgsinexp  46001  itgcoscmulx  46015  itgsincmulx  46020  wallispilem2  46112  dirker2re  46138  dirkerdenne0  46139  dirkerper  46142  dirkertrigeqlem2  46145  dirkertrigeqlem3  46146  dirkeritg  46148  dirkercncflem2  46150  dirkercncflem4  46152  fourierdlem39  46192  fourierdlem43  46196  fourierdlem44  46197  fourierdlem56  46208  fourierdlem57  46209  fourierdlem58  46210  fourierdlem62  46214  fourierdlem68  46220  fourierdlem72  46224  fourierdlem73  46225  fourierdlem76  46228  fourierdlem80  46232  fourierdlem103  46255  fourierdlem104  46256  sqwvfoura  46274  sqwvfourb  46275  fouriersw  46277  sinh-conventional  49779
  Copyright terms: Public domain W3C validator