MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulcl Structured version   Visualization version   GIF version

Theorem chfacfscmulcl 22770
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
Assertion
Ref Expression
chfacfscmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 𝑋) · (𝐺𝐾)) ∈ (Base‘𝑌))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   · (𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfscmulcl
StepHypRef Expression
1 crngring 20161 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 chfacfisf.p . . . . . 6 𝑃 = (Poly1𝑅)
3 chfacfisf.y . . . . . 6 𝑌 = (𝑁 Mat 𝑃)
42, 3pmatlmod 22606 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
51, 4sylan2 593 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
653adant3 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
763ad2ant1 1133 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod)
8 eqid 2731 . . . . 5 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9 eqid 2731 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
108, 9mgpbas 20061 . . . 4 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
11 chfacfscmulcl.e . . . 4 = (.g‘(mulGrp‘𝑃))
122ply1ring 22158 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
131, 12syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
14133ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
158ringmgp 20155 . . . . . 6 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
1614, 15syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
17163ad2ant1 1133 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
18 simp3 1138 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
1913ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
20 chfacfscmulcl.x . . . . . . 7 𝑋 = (var1𝑅)
2120, 2, 9vr1cl 22128 . . . . . 6 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2219, 21syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
23223ad2ant1 1133 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
2410, 11, 17, 18, 23mulgnn0cld 19005 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘𝑃))
252ply1crng 22109 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2625anim2i 617 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
27263adant3 1132 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
283matsca2 22333 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
2927, 28syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
3029eqcomd 2737 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
3130fveq2d 6826 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
32313ad2ant1 1133 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
3324, 32eleqtrrd 2834 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)))
34 chfacfisf.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
35 chfacfisf.b . . . . . 6 𝐵 = (Base‘𝐴)
36 chfacfisf.r . . . . . 6 × = (.r𝑌)
37 chfacfisf.s . . . . . 6 = (-g𝑌)
38 chfacfisf.0 . . . . . 6 0 = (0g𝑌)
39 chfacfisf.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
40 chfacfisf.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
4134, 35, 2, 3, 36, 37, 38, 39, 40chfacfisf 22767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
421, 41syl3anl2 1415 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
43423adant3 1132 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌))
4443, 18ffvelcdmd 7018 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺𝐾) ∈ (Base‘𝑌))
45 eqid 2731 . . 3 (Base‘𝑌) = (Base‘𝑌)
46 eqid 2731 . . 3 (Scalar‘𝑌) = (Scalar‘𝑌)
47 chfacfscmulcl.m . . 3 · = ( ·𝑠𝑌)
48 eqid 2731 . . 3 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4945, 46, 47, 48lmodvscl 20809 . 2 ((𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺𝐾) ∈ (Base‘𝑌)) → ((𝐾 𝑋) · (𝐺𝐾)) ∈ (Base‘𝑌))
507, 33, 44, 49syl3anc 1373 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 𝑋) · (𝐺𝐾)) ∈ (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ifcif 4475   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cmin 11341  cn 12122  0cn0 12378  ...cfz 13404  Basecbs 17117  .rcmulr 17159  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  Mndcmnd 18639  -gcsg 18845  .gcmg 18977  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  LModclmod 20791  var1cv1 22086  Poly1cpl1 22087   Mat cmat 22320   matToPolyMat cmat2pmat 22617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-psr1 22090  df-vr1 22091  df-ply1 22092  df-mamu 22304  df-mat 22321  df-mat2pmat 22620
This theorem is referenced by:  chfacfscmulgsum  22773
  Copyright terms: Public domain W3C validator