MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulcl Structured version   Visualization version   GIF version

Theorem chfacfscmulcl 22772
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐡 = (Baseβ€˜π΄)
chfacfisf.p 𝑃 = (Poly1β€˜π‘…)
chfacfisf.y π‘Œ = (𝑁 Mat 𝑃)
chfacfisf.r Γ— = (.rβ€˜π‘Œ)
chfacfisf.s βˆ’ = (-gβ€˜π‘Œ)
chfacfisf.0 0 = (0gβ€˜π‘Œ)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
chfacfscmulcl.x 𝑋 = (var1β€˜π‘…)
chfacfscmulcl.m Β· = ( ·𝑠 β€˜π‘Œ)
chfacfscmulcl.e ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
Assertion
Ref Expression
chfacfscmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
Distinct variable groups:   𝐡,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,π‘Œ   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐡(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   Β· (𝑛,𝑠,𝑏)   Γ— (𝑛,𝑠,𝑏)   ↑ (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   βˆ’ (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   π‘Œ(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfscmulcl
StepHypRef Expression
1 crngring 20184 . . . . 5 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2 chfacfisf.p . . . . . 6 𝑃 = (Poly1β€˜π‘…)
3 chfacfisf.y . . . . . 6 π‘Œ = (𝑁 Mat 𝑃)
42, 3pmatlmod 22608 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ π‘Œ ∈ LMod)
51, 4sylan2 591 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ LMod)
653adant3 1129 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ LMod)
763ad2ant1 1130 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ π‘Œ ∈ LMod)
8 eqid 2725 . . . . 5 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
9 eqid 2725 . . . . 5 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
108, 9mgpbas 20079 . . . 4 (Baseβ€˜π‘ƒ) = (Baseβ€˜(mulGrpβ€˜π‘ƒ))
11 chfacfscmulcl.e . . . 4 ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
122ply1ring 22170 . . . . . . . 8 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
131, 12syl 17 . . . . . . 7 (𝑅 ∈ CRing β†’ 𝑃 ∈ Ring)
14133ad2ant2 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 ∈ Ring)
158ringmgp 20178 . . . . . 6 (𝑃 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
1614, 15syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
17163ad2ant1 1130 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
18 simp3 1135 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝐾 ∈ β„•0)
1913ad2ant2 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
20 chfacfscmulcl.x . . . . . . 7 𝑋 = (var1β€˜π‘…)
2120, 2, 9vr1cl 22140 . . . . . 6 (𝑅 ∈ Ring β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
2219, 21syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
23223ad2ant1 1130 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
2410, 11, 17, 18, 23mulgnn0cld 19049 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
252ply1crng 22121 . . . . . . . . 9 (𝑅 ∈ CRing β†’ 𝑃 ∈ CRing)
2625anim2i 615 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
27263adant3 1129 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
283matsca2 22335 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
2927, 28syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
3029eqcomd 2731 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Scalarβ€˜π‘Œ) = 𝑃)
3130fveq2d 6894 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
32313ad2ant1 1130 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
3324, 32eleqtrrd 2828 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
34 chfacfisf.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
35 chfacfisf.b . . . . . 6 𝐡 = (Baseβ€˜π΄)
36 chfacfisf.r . . . . . 6 Γ— = (.rβ€˜π‘Œ)
37 chfacfisf.s . . . . . 6 βˆ’ = (-gβ€˜π‘Œ)
38 chfacfisf.0 . . . . . 6 0 = (0gβ€˜π‘Œ)
39 chfacfisf.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
40 chfacfisf.g . . . . . 6 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
4134, 35, 2, 3, 36, 37, 38, 39, 40chfacfisf 22769 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
421, 41syl3anl2 1410 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
43423adant3 1129 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
4443, 18ffvelcdmd 7088 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (πΊβ€˜πΎ) ∈ (Baseβ€˜π‘Œ))
45 eqid 2725 . . 3 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
46 eqid 2725 . . 3 (Scalarβ€˜π‘Œ) = (Scalarβ€˜π‘Œ)
47 chfacfscmulcl.m . . 3 Β· = ( ·𝑠 β€˜π‘Œ)
48 eqid 2725 . . 3 (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜(Scalarβ€˜π‘Œ))
4945, 46, 47, 48lmodvscl 20760 . 2 ((π‘Œ ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ∧ (πΊβ€˜πΎ) ∈ (Baseβ€˜π‘Œ)) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
507, 33, 44, 49syl3anc 1368 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ifcif 4525   class class class wbr 5144   ↦ cmpt 5227  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7413   ↑m cmap 8838  Fincfn 8957  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273   βˆ’ cmin 11469  β„•cn 12237  β„•0cn0 12497  ...cfz 13511  Basecbs 17174  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17415  Mndcmnd 18688  -gcsg 18891  .gcmg 19022  mulGrpcmgp 20073  Ringcrg 20172  CRingccrg 20173  LModclmod 20742  var1cv1 22098  Poly1cpl1 22099   Mat cmat 22320   matToPolyMat cmat2pmat 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-fzo 13655  df-seq 13994  df-hash 14317  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-ghm 19167  df-cntz 19267  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-cring 20175  df-subrng 20482  df-subrg 20507  df-lmod 20744  df-lss 20815  df-sra 21057  df-rgmod 21058  df-dsmm 21665  df-frlm 21680  df-ascl 21788  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-mamu 22304  df-mat 22321  df-mat2pmat 22622
This theorem is referenced by:  chfacfscmulgsum  22775
  Copyright terms: Public domain W3C validator