![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chfacfscmulcl | Structured version Visualization version GIF version |
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) |
Ref | Expression |
---|---|
chfacfisf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chfacfisf.b | ⊢ 𝐵 = (Base‘𝐴) |
chfacfisf.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chfacfisf.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chfacfisf.r | ⊢ × = (.r‘𝑌) |
chfacfisf.s | ⊢ − = (-g‘𝑌) |
chfacfisf.0 | ⊢ 0 = (0g‘𝑌) |
chfacfisf.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chfacfisf.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
chfacfscmulcl.x | ⊢ 𝑋 = (var1‘𝑅) |
chfacfscmulcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
chfacfscmulcl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
Ref | Expression |
---|---|
chfacfscmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20026 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | chfacfisf.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | chfacfisf.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
4 | 2, 3 | pmatlmod 22124 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod) |
8 | eqid 2731 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
9 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
10 | 8, 9 | mgpbas 19952 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(mulGrp‘𝑃)) |
11 | chfacfscmulcl.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
12 | 2 | ply1ring 21701 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
13 | 1, 12 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
15 | 8 | ringmgp 20020 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd) |
18 | simp3 1138 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
19 | 1 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
20 | chfacfscmulcl.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
21 | 20, 2, 9 | vr1cl 21670 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃)) |
24 | 10, 11, 17, 18, 23 | mulgnn0cld 18947 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
25 | 2 | ply1crng 21651 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
28 | 3 | matsca2 21851 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
30 | 29 | eqcomd 2737 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
31 | 30 | fveq2d 6882 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
32 | 31 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
33 | 24, 32 | eleqtrrd 2835 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
34 | chfacfisf.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
35 | chfacfisf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
36 | chfacfisf.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
37 | chfacfisf.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
38 | chfacfisf.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
39 | chfacfisf.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
40 | chfacfisf.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
41 | 34, 35, 2, 3, 36, 37, 38, 39, 40 | chfacfisf 22285 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
42 | 1, 41 | syl3anl2 1413 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
43 | 42 | 3adant3 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
44 | 43, 18 | ffvelcdmd 7072 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
45 | eqid 2731 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
46 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
47 | chfacfscmulcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
48 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
49 | 45, 46, 47, 48 | lmodvscl 20438 | . 2 ⊢ ((𝑌 ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
50 | 7, 33, 44, 49 | syl3anc 1371 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ifcif 4522 class class class wbr 5141 ↦ cmpt 5224 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ↑m cmap 8803 Fincfn 8922 0cc0 11092 1c1 11093 + caddc 11095 < clt 11230 − cmin 11426 ℕcn 12194 ℕ0cn0 12454 ...cfz 13466 Basecbs 17126 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17367 Mndcmnd 18602 -gcsg 18796 .gcmg 18922 mulGrpcmgp 19946 Ringcrg 20014 CRingccrg 20015 LModclmod 20420 var1cv1 21629 Poly1cpl1 21630 Mat cmat 21836 matToPolyMat cmat2pmat 22135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-ot 4631 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-ofr 7654 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17369 df-gsum 17370 df-prds 17375 df-pws 17377 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-mulg 18923 df-subg 18975 df-ghm 19056 df-cntz 19147 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-subrg 20310 df-lmod 20422 df-lss 20492 df-sra 20734 df-rgmod 20735 df-dsmm 21220 df-frlm 21235 df-ascl 21343 df-psr 21393 df-mvr 21394 df-mpl 21395 df-opsr 21397 df-psr1 21633 df-vr1 21634 df-ply1 21635 df-mamu 21815 df-mat 21837 df-mat2pmat 22138 |
This theorem is referenced by: chfacfscmulgsum 22291 |
Copyright terms: Public domain | W3C validator |