Step | Hyp | Ref
| Expression |
1 | | crngring 20061 |
. . . . 5
β’ (π
β CRing β π
β Ring) |
2 | | chfacfisf.p |
. . . . . 6
β’ π = (Poly1βπ
) |
3 | | chfacfisf.y |
. . . . . 6
β’ π = (π Mat π) |
4 | 2, 3 | pmatlmod 22186 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β π β LMod) |
5 | 1, 4 | sylan2 593 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β π β LMod) |
6 | 5 | 3adant3 1132 |
. . 3
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β LMod) |
7 | 6 | 3ad2ant1 1133 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β π β LMod) |
8 | | eqid 2732 |
. . . . 5
β’
(mulGrpβπ) =
(mulGrpβπ) |
9 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
10 | 8, 9 | mgpbas 19987 |
. . . 4
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
11 | | chfacfscmulcl.e |
. . . 4
β’ β =
(.gβ(mulGrpβπ)) |
12 | 2 | ply1ring 21761 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
13 | 1, 12 | syl 17 |
. . . . . . 7
β’ (π
β CRing β π β Ring) |
14 | 13 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
15 | 8 | ringmgp 20055 |
. . . . . 6
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
16 | 14, 15 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (mulGrpβπ) β Mnd) |
17 | 16 | 3ad2ant1 1133 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β
(mulGrpβπ) β
Mnd) |
18 | | simp3 1138 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β πΎ β
β0) |
19 | 1 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
β Ring) |
20 | | chfacfscmulcl.x |
. . . . . . 7
β’ π = (var1βπ
) |
21 | 20, 2, 9 | vr1cl 21732 |
. . . . . 6
β’ (π
β Ring β π β (Baseβπ)) |
22 | 19, 21 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β (Baseβπ)) |
23 | 22 | 3ad2ant1 1133 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β π β (Baseβπ)) |
24 | 10, 11, 17, 18, 23 | mulgnn0cld 18969 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β (πΎ β π) β (Baseβπ)) |
25 | 2 | ply1crng 21713 |
. . . . . . . . 9
β’ (π
β CRing β π β CRing) |
26 | 25 | anim2i 617 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π β CRing)) |
27 | 26 | 3adant3 1132 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π β Fin β§ π β CRing)) |
28 | 3 | matsca2 21913 |
. . . . . . 7
β’ ((π β Fin β§ π β CRing) β π = (Scalarβπ)) |
29 | 27, 28 | syl 17 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π = (Scalarβπ)) |
30 | 29 | eqcomd 2738 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Scalarβπ) = π) |
31 | 30 | fveq2d 6892 |
. . . 4
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
32 | 31 | 3ad2ant1 1133 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β
(Baseβ(Scalarβπ)) = (Baseβπ)) |
33 | 24, 32 | eleqtrrd 2836 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β (πΎ β π) β (Baseβ(Scalarβπ))) |
34 | | chfacfisf.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
35 | | chfacfisf.b |
. . . . . 6
β’ π΅ = (Baseβπ΄) |
36 | | chfacfisf.r |
. . . . . 6
β’ Γ =
(.rβπ) |
37 | | chfacfisf.s |
. . . . . 6
β’ β =
(-gβπ) |
38 | | chfacfisf.0 |
. . . . . 6
β’ 0 =
(0gβπ) |
39 | | chfacfisf.t |
. . . . . 6
β’ π = (π matToPolyMat π
) |
40 | | chfacfisf.g |
. . . . . 6
β’ πΊ = (π β β0 β¦ if(π = 0, ( 0 β ((πβπ) Γ (πβ(πβ0)))), if(π = (π + 1), (πβ(πβπ )), if((π + 1) < π, 0 , ((πβ(πβ(π β 1))) β ((πβπ) Γ (πβ(πβπ)))))))) |
41 | 34, 35, 2, 3, 36, 37, 38, 39, 40 | chfacfisf 22347 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β πΊ:β0βΆ(Baseβπ)) |
42 | 1, 41 | syl3anl2 1413 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β πΊ:β0βΆ(Baseβπ)) |
43 | 42 | 3adant3 1132 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β πΊ:β0βΆ(Baseβπ)) |
44 | 43, 18 | ffvelcdmd 7084 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β (πΊβπΎ) β (Baseβπ)) |
45 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
46 | | eqid 2732 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
47 | | chfacfscmulcl.m |
. . 3
β’ Β· = (
Β·π βπ) |
48 | | eqid 2732 |
. . 3
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
49 | 45, 46, 47, 48 | lmodvscl 20481 |
. 2
β’ ((π β LMod β§ (πΎ β π) β (Baseβ(Scalarβπ)) β§ (πΊβπΎ) β (Baseβπ)) β ((πΎ β π) Β· (πΊβπΎ)) β (Baseβπ)) |
50 | 7, 33, 44, 49 | syl3anc 1371 |
1
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π ))) β§ πΎ β β0) β ((πΎ β π) Β· (πΊβπΎ)) β (Baseβπ)) |