MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulcl Structured version   Visualization version   GIF version

Theorem chfacfscmulcl 22746
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐡 = (Baseβ€˜π΄)
chfacfisf.p 𝑃 = (Poly1β€˜π‘…)
chfacfisf.y π‘Œ = (𝑁 Mat 𝑃)
chfacfisf.r Γ— = (.rβ€˜π‘Œ)
chfacfisf.s βˆ’ = (-gβ€˜π‘Œ)
chfacfisf.0 0 = (0gβ€˜π‘Œ)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
chfacfscmulcl.x 𝑋 = (var1β€˜π‘…)
chfacfscmulcl.m Β· = ( ·𝑠 β€˜π‘Œ)
chfacfscmulcl.e ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
Assertion
Ref Expression
chfacfscmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
Distinct variable groups:   𝐡,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,π‘Œ   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐡(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   Β· (𝑛,𝑠,𝑏)   Γ— (𝑛,𝑠,𝑏)   ↑ (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   βˆ’ (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   π‘Œ(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfscmulcl
StepHypRef Expression
1 crngring 20176 . . . . 5 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2 chfacfisf.p . . . . . 6 𝑃 = (Poly1β€˜π‘…)
3 chfacfisf.y . . . . . 6 π‘Œ = (𝑁 Mat 𝑃)
42, 3pmatlmod 22582 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ π‘Œ ∈ LMod)
51, 4sylan2 592 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ LMod)
653adant3 1130 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ LMod)
763ad2ant1 1131 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ π‘Œ ∈ LMod)
8 eqid 2727 . . . . 5 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
9 eqid 2727 . . . . 5 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
108, 9mgpbas 20071 . . . 4 (Baseβ€˜π‘ƒ) = (Baseβ€˜(mulGrpβ€˜π‘ƒ))
11 chfacfscmulcl.e . . . 4 ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
122ply1ring 22153 . . . . . . . 8 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
131, 12syl 17 . . . . . . 7 (𝑅 ∈ CRing β†’ 𝑃 ∈ Ring)
14133ad2ant2 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 ∈ Ring)
158ringmgp 20170 . . . . . 6 (𝑃 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
1614, 15syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
17163ad2ant1 1131 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
18 simp3 1136 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝐾 ∈ β„•0)
1913ad2ant2 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
20 chfacfscmulcl.x . . . . . . 7 𝑋 = (var1β€˜π‘…)
2120, 2, 9vr1cl 22123 . . . . . 6 (𝑅 ∈ Ring β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
2219, 21syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
23223ad2ant1 1131 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
2410, 11, 17, 18, 23mulgnn0cld 19041 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
252ply1crng 22104 . . . . . . . . 9 (𝑅 ∈ CRing β†’ 𝑃 ∈ CRing)
2625anim2i 616 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
27263adant3 1130 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
283matsca2 22309 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
2927, 28syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
3029eqcomd 2733 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Scalarβ€˜π‘Œ) = 𝑃)
3130fveq2d 6895 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
32313ad2ant1 1131 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
3324, 32eleqtrrd 2831 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
34 chfacfisf.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
35 chfacfisf.b . . . . . 6 𝐡 = (Baseβ€˜π΄)
36 chfacfisf.r . . . . . 6 Γ— = (.rβ€˜π‘Œ)
37 chfacfisf.s . . . . . 6 βˆ’ = (-gβ€˜π‘Œ)
38 chfacfisf.0 . . . . . 6 0 = (0gβ€˜π‘Œ)
39 chfacfisf.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
40 chfacfisf.g . . . . . 6 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
4134, 35, 2, 3, 36, 37, 38, 39, 40chfacfisf 22743 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
421, 41syl3anl2 1411 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
43423adant3 1130 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
4443, 18ffvelcdmd 7089 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ (πΊβ€˜πΎ) ∈ (Baseβ€˜π‘Œ))
45 eqid 2727 . . 3 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
46 eqid 2727 . . 3 (Scalarβ€˜π‘Œ) = (Scalarβ€˜π‘Œ)
47 chfacfscmulcl.m . . 3 Β· = ( ·𝑠 β€˜π‘Œ)
48 eqid 2727 . . 3 (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜(Scalarβ€˜π‘Œ))
4945, 46, 47, 48lmodvscl 20750 . 2 ((π‘Œ ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ∧ (πΊβ€˜πΎ) ∈ (Baseβ€˜π‘Œ)) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
507, 33, 44, 49syl3anc 1369 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝐾 ∈ β„•0) β†’ ((𝐾 ↑ 𝑋) Β· (πΊβ€˜πΎ)) ∈ (Baseβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414   ↑m cmap 8836  Fincfn 8955  0cc0 11130  1c1 11131   + caddc 11133   < clt 11270   βˆ’ cmin 11466  β„•cn 12234  β„•0cn0 12494  ...cfz 13508  Basecbs 17171  .rcmulr 17225  Scalarcsca 17227   ·𝑠 cvsca 17228  0gc0g 17412  Mndcmnd 18685  -gcsg 18883  .gcmg 19014  mulGrpcmgp 20065  Ringcrg 20164  CRingccrg 20165  LModclmod 20732  var1cv1 22082  Poly1cpl1 22083   Mat cmat 22294   matToPolyMat cmat2pmat 22593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-mamu 22273  df-mat 22295  df-mat2pmat 22596
This theorem is referenced by:  chfacfscmulgsum  22749
  Copyright terms: Public domain W3C validator