Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chfacfscmulcl | Structured version Visualization version GIF version |
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) |
Ref | Expression |
---|---|
chfacfisf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chfacfisf.b | ⊢ 𝐵 = (Base‘𝐴) |
chfacfisf.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chfacfisf.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chfacfisf.r | ⊢ × = (.r‘𝑌) |
chfacfisf.s | ⊢ − = (-g‘𝑌) |
chfacfisf.0 | ⊢ 0 = (0g‘𝑌) |
chfacfisf.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chfacfisf.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
chfacfscmulcl.x | ⊢ 𝑋 = (var1‘𝑅) |
chfacfscmulcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
chfacfscmulcl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
Ref | Expression |
---|---|
chfacfscmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19710 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | chfacfisf.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | chfacfisf.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
4 | 2, 3 | pmatlmod 21750 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
5 | 1, 4 | sylan2 592 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
6 | 5 | 3adant3 1130 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
7 | 6 | 3ad2ant1 1131 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod) |
8 | 2 | ply1ring 21329 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
9 | 1, 8 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
10 | 9 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
11 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
12 | 11 | ringmgp 19704 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
14 | 13 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd) |
15 | simp3 1136 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
16 | 1 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
17 | chfacfscmulcl.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
18 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
19 | 17, 2, 18 | vr1cl 21298 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
20 | 16, 19 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
21 | 20 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃)) |
22 | 11, 18 | mgpbas 19641 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘(mulGrp‘𝑃)) |
23 | chfacfscmulcl.e | . . . . 5 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
24 | 22, 23 | mulgnn0cl 18635 | . . . 4 ⊢ (((mulGrp‘𝑃) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝑋 ∈ (Base‘𝑃)) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
25 | 14, 15, 21, 24 | syl3anc 1369 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
26 | 2 | ply1crng 21279 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
27 | 26 | anim2i 616 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
28 | 27 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
29 | 3 | matsca2 21477 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
30 | 28, 29 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
31 | 30 | eqcomd 2744 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
32 | 31 | fveq2d 6760 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
33 | 32 | 3ad2ant1 1131 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
34 | 25, 33 | eleqtrrd 2842 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
35 | chfacfisf.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
36 | chfacfisf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
37 | chfacfisf.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
38 | chfacfisf.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
39 | chfacfisf.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
40 | chfacfisf.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
41 | chfacfisf.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
42 | 35, 36, 2, 3, 37, 38, 39, 40, 41 | chfacfisf 21911 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
43 | 1, 42 | syl3anl2 1411 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
44 | 43 | 3adant3 1130 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
45 | 44, 15 | ffvelrnd 6944 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
46 | eqid 2738 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
47 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
48 | chfacfscmulcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
49 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
50 | 46, 47, 48, 49 | lmodvscl 20055 | . 2 ⊢ ((𝑌 ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
51 | 7, 34, 45, 50 | syl3anc 1369 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ...cfz 13168 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Mndcmnd 18300 -gcsg 18494 .gcmg 18615 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 LModclmod 20038 var1cv1 21257 Poly1cpl1 21258 Mat cmat 21464 matToPolyMat cmat2pmat 21761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-mamu 21443 df-mat 21465 df-mat2pmat 21764 |
This theorem is referenced by: chfacfscmulgsum 21917 |
Copyright terms: Public domain | W3C validator |