![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chfacfscmulcl | Structured version Visualization version GIF version |
Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) |
Ref | Expression |
---|---|
chfacfisf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chfacfisf.b | ⊢ 𝐵 = (Base‘𝐴) |
chfacfisf.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chfacfisf.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chfacfisf.r | ⊢ × = (.r‘𝑌) |
chfacfisf.s | ⊢ − = (-g‘𝑌) |
chfacfisf.0 | ⊢ 0 = (0g‘𝑌) |
chfacfisf.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chfacfisf.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
chfacfscmulcl.x | ⊢ 𝑋 = (var1‘𝑅) |
chfacfscmulcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
chfacfscmulcl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
Ref | Expression |
---|---|
chfacfscmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20263 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | chfacfisf.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | chfacfisf.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
4 | 2, 3 | pmatlmod 22715 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
6 | 5 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
7 | 6 | 3ad2ant1 1132 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod) |
8 | eqid 2735 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
9 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
10 | 8, 9 | mgpbas 20158 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(mulGrp‘𝑃)) |
11 | chfacfscmulcl.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
12 | 2 | ply1ring 22265 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
13 | 1, 12 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
15 | 8 | ringmgp 20257 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
17 | 16 | 3ad2ant1 1132 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd) |
18 | simp3 1137 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
19 | 1 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
20 | chfacfscmulcl.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
21 | 20, 2, 9 | vr1cl 22235 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
23 | 22 | 3ad2ant1 1132 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃)) |
24 | 10, 11, 17, 18, 23 | mulgnn0cld 19126 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
25 | 2 | ply1crng 22216 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
27 | 26 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
28 | 3 | matsca2 22442 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
30 | 29 | eqcomd 2741 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
31 | 30 | fveq2d 6911 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
32 | 31 | 3ad2ant1 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
33 | 24, 32 | eleqtrrd 2842 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
34 | chfacfisf.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
35 | chfacfisf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
36 | chfacfisf.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
37 | chfacfisf.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
38 | chfacfisf.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
39 | chfacfisf.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
40 | chfacfisf.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
41 | 34, 35, 2, 3, 36, 37, 38, 39, 40 | chfacfisf 22876 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
42 | 1, 41 | syl3anl2 1412 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
43 | 42 | 3adant3 1131 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
44 | 43, 18 | ffvelcdmd 7105 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
45 | eqid 2735 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
46 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
47 | chfacfscmulcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
48 | eqid 2735 | . . 3 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
49 | 45, 46, 47, 48 | lmodvscl 20893 | . 2 ⊢ ((𝑌 ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
50 | 7, 33, 44, 49 | syl3anc 1370 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ...cfz 13544 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 Mndcmnd 18760 -gcsg 18966 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 LModclmod 20875 var1cv1 22193 Poly1cpl1 22194 Mat cmat 22427 matToPolyMat cmat2pmat 22726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-mamu 22411 df-mat 22428 df-mat2pmat 22729 |
This theorem is referenced by: chfacfscmulgsum 22882 |
Copyright terms: Public domain | W3C validator |