| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chfacfscmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) |
| Ref | Expression |
|---|---|
| chfacfisf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chfacfisf.b | ⊢ 𝐵 = (Base‘𝐴) |
| chfacfisf.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chfacfisf.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chfacfisf.r | ⊢ × = (.r‘𝑌) |
| chfacfisf.s | ⊢ − = (-g‘𝑌) |
| chfacfisf.0 | ⊢ 0 = (0g‘𝑌) |
| chfacfisf.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chfacfisf.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| chfacfscmulcl.x | ⊢ 𝑋 = (var1‘𝑅) |
| chfacfscmulcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chfacfscmulcl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| Ref | Expression |
|---|---|
| chfacfscmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20165 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | chfacfisf.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | chfacfisf.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 4 | 2, 3 | pmatlmod 22609 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod) |
| 8 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 10 | 8, 9 | mgpbas 20065 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(mulGrp‘𝑃)) |
| 11 | chfacfscmulcl.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 12 | 2 | ply1ring 22161 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 13 | 1, 12 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 14 | 13 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 15 | 8 | ringmgp 20159 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd) |
| 18 | simp3 1138 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 19 | 1 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 20 | chfacfscmulcl.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
| 21 | 20, 2, 9 | vr1cl 22131 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
| 23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃)) |
| 24 | 10, 11, 17, 18, 23 | mulgnn0cld 19010 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 25 | 2 | ply1crng 22112 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
| 27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
| 28 | 3 | matsca2 22336 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
| 30 | 29 | eqcomd 2739 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
| 31 | 30 | fveq2d 6832 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
| 32 | 31 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
| 33 | 24, 32 | eleqtrrd 2836 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
| 34 | chfacfisf.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 35 | chfacfisf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 36 | chfacfisf.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
| 37 | chfacfisf.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
| 38 | chfacfisf.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
| 39 | chfacfisf.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 40 | chfacfisf.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 41 | 34, 35, 2, 3, 36, 37, 38, 39, 40 | chfacfisf 22770 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 42 | 1, 41 | syl3anl2 1415 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 43 | 42 | 3adant3 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 44 | 43, 18 | ffvelcdmd 7024 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
| 45 | eqid 2733 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 46 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 47 | chfacfscmulcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 48 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
| 49 | 45, 46, 47, 48 | lmodvscl 20813 | . 2 ⊢ ((𝑌 ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| 50 | 7, 33, 44, 49 | syl3anc 1373 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ...cfz 13409 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 Mndcmnd 18644 -gcsg 18850 .gcmg 18982 mulGrpcmgp 20060 Ringcrg 20153 CRingccrg 20154 LModclmod 20795 var1cv1 22089 Poly1cpl1 22090 Mat cmat 22323 matToPolyMat cmat2pmat 22620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-sra 21109 df-rgmod 21110 df-dsmm 21671 df-frlm 21686 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-mamu 22307 df-mat 22324 df-mat2pmat 22623 |
| This theorem is referenced by: chfacfscmulgsum 22776 |
| Copyright terms: Public domain | W3C validator |