| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chfacfscmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) |
| Ref | Expression |
|---|---|
| chfacfisf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chfacfisf.b | ⊢ 𝐵 = (Base‘𝐴) |
| chfacfisf.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chfacfisf.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chfacfisf.r | ⊢ × = (.r‘𝑌) |
| chfacfisf.s | ⊢ − = (-g‘𝑌) |
| chfacfisf.0 | ⊢ 0 = (0g‘𝑌) |
| chfacfisf.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chfacfisf.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| chfacfscmulcl.x | ⊢ 𝑋 = (var1‘𝑅) |
| chfacfscmulcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| chfacfscmulcl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| Ref | Expression |
|---|---|
| chfacfscmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20161 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | chfacfisf.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | chfacfisf.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 4 | 2, 3 | pmatlmod 22587 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod) |
| 8 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 10 | 8, 9 | mgpbas 20061 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(mulGrp‘𝑃)) |
| 11 | chfacfscmulcl.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 12 | 2 | ply1ring 22139 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 13 | 1, 12 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 14 | 13 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 15 | 8 | ringmgp 20155 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd) |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd) |
| 18 | simp3 1138 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 19 | 1 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 20 | chfacfscmulcl.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
| 21 | 20, 2, 9 | vr1cl 22109 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
| 23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃)) |
| 24 | 10, 11, 17, 18, 23 | mulgnn0cld 19034 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 25 | 2 | ply1crng 22090 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
| 27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
| 28 | 3 | matsca2 22314 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
| 30 | 29 | eqcomd 2736 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
| 31 | 30 | fveq2d 6865 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
| 32 | 31 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
| 33 | 24, 32 | eleqtrrd 2832 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
| 34 | chfacfisf.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 35 | chfacfisf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 36 | chfacfisf.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
| 37 | chfacfisf.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
| 38 | chfacfisf.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
| 39 | chfacfisf.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 40 | chfacfisf.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 41 | 34, 35, 2, 3, 36, 37, 38, 39, 40 | chfacfisf 22748 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 42 | 1, 41 | syl3anl2 1415 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 43 | 42 | 3adant3 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 44 | 43, 18 | ffvelcdmd 7060 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
| 45 | eqid 2730 | . . 3 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 46 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 47 | chfacfscmulcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 48 | eqid 2730 | . . 3 ⊢ (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | |
| 49 | 45, 46, 47, 48 | lmodvscl 20791 | . 2 ⊢ ((𝑌 ∈ LMod ∧ (𝐾 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| 50 | 7, 33, 44, 49 | syl3anc 1373 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 − cmin 11412 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 Mndcmnd 18668 -gcsg 18874 .gcmg 19006 mulGrpcmgp 20056 Ringcrg 20149 CRingccrg 20150 LModclmod 20773 var1cv1 22067 Poly1cpl1 22068 Mat cmat 22301 matToPolyMat cmat2pmat 22598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-mamu 22285 df-mat 22302 df-mat2pmat 22601 |
| This theorem is referenced by: chfacfscmulgsum 22754 |
| Copyright terms: Public domain | W3C validator |