Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version |
Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsummon.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsummon.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsummon.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsummon.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsummon.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1gsummon.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
evl1gsummon.e | ⊢ 𝐸 = (.g‘𝐻) |
evl1gsummon.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1gsummon.p | ⊢ ↑ = (.g‘𝐺) |
evl1gsummon.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1gsummon.t2 | ⊢ · = (.r‘𝑅) |
evl1gsummon.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsummon.a | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) |
evl1gsummon.m | ⊢ (𝜑 → 𝑀 ⊆ ℕ0) |
evl1gsummon.f | ⊢ (𝜑 → 𝑀 ∈ Fin) |
evl1gsummon.n | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) |
evl1gsummon.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evl1gsummon | ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsummon.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsummon.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | evl1gsummon.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
4 | eqid 2736 | . . 3 ⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | |
5 | evl1gsummon.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
6 | evl1gsummon.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | crngring 19867 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | 3 | ply1lmod 21503 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑊 ∈ LMod) |
12 | evl1gsummon.a | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) | |
13 | 12 | r19.21bi 3230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ 𝐾) |
14 | 3 | ply1sca 21504 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
15 | 6, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
16 | 15 | fveq2d 6815 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑊))) |
17 | 2, 16 | eqtrid 2788 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐾 = (Base‘(Scalar‘𝑊))) |
19 | 13, 18 | eleqtrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
20 | 3 | ply1ring 21499 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
21 | 8, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
22 | evl1gsummon.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
23 | 22 | ringmgp 19861 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
24 | 21, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
25 | 24 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐺 ∈ Mnd) |
26 | evl1gsummon.n | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) | |
27 | 26 | r19.21bi 3230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑁 ∈ ℕ0) |
28 | 8 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
29 | evl1gsummon.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
30 | 29, 3, 5 | vr1cl 21468 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
31 | 28, 30 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑋 ∈ 𝐵) |
32 | 22, 5 | mgpbas 19798 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) |
33 | evl1gsummon.p | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
34 | 32, 33 | mulgnn0cl 18793 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
35 | 25, 27, 31, 34 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
36 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
37 | evl1gsummon.t1 | . . . . 5 ⊢ × = ( ·𝑠 ‘𝑊) | |
38 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
39 | 5, 36, 37, 38 | lmodvscl 20220 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ 𝐵) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
40 | 11, 19, 35, 39 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
41 | evl1gsummon.m | . . 3 ⊢ (𝜑 → 𝑀 ⊆ ℕ0) | |
42 | evl1gsummon.f | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
43 | evl1gsummon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
44 | 1, 2, 3, 4, 5, 6, 40, 41, 42, 43 | evl1gsumaddval 21605 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)))) |
45 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
46 | 43 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 ∈ 𝐾) |
47 | evl1gsummon.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
48 | evl1gsummon.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
49 | evl1gsummon.t2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
50 | 1, 3, 22, 29, 2, 33, 45, 27, 37, 13, 46, 47, 48, 49 | evl1scvarpwval 21610 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
51 | 50 | mpteq2dva 5186 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)) = (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶)))) |
52 | 51 | oveq2d 7332 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶))) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
53 | 44, 52 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3896 ↦ cmpt 5169 ‘cfv 6465 (class class class)co 7316 Fincfn 8782 ℕ0cn0 12312 Basecbs 16986 .rcmulr 17037 Scalarcsca 17039 ·𝑠 cvsca 17040 Σg cgsu 17225 ↑s cpws 17231 Mndcmnd 18459 .gcmg 18773 mulGrpcmgp 19792 Ringcrg 19855 CRingccrg 19856 LModclmod 20203 var1cv1 21427 Poly1cpl1 21428 eval1ce1 21560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-ofr 7575 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-sup 9277 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-hom 17060 df-cco 17061 df-0g 17226 df-gsum 17227 df-prds 17232 df-pws 17234 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-mhm 18504 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-mulg 18774 df-subg 18825 df-ghm 18905 df-cntz 18996 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-srg 19814 df-ring 19857 df-cring 19858 df-rnghom 20031 df-subrg 20101 df-lmod 20205 df-lss 20274 df-lsp 20314 df-assa 21140 df-asp 21141 df-ascl 21142 df-psr 21192 df-mvr 21193 df-mpl 21194 df-opsr 21196 df-evls 21362 df-evl 21363 df-psr1 21431 df-vr1 21432 df-ply1 21433 df-evl1 21562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |