| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version | ||
| Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1gsummon.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1gsummon.k | ⊢ 𝐾 = (Base‘𝑅) |
| evl1gsummon.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1gsummon.b | ⊢ 𝐵 = (Base‘𝑊) |
| evl1gsummon.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1gsummon.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
| evl1gsummon.e | ⊢ 𝐸 = (.g‘𝐻) |
| evl1gsummon.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1gsummon.p | ⊢ ↑ = (.g‘𝐺) |
| evl1gsummon.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
| evl1gsummon.t2 | ⊢ · = (.r‘𝑅) |
| evl1gsummon.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1gsummon.a | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) |
| evl1gsummon.m | ⊢ (𝜑 → 𝑀 ⊆ ℕ0) |
| evl1gsummon.f | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| evl1gsummon.n | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) |
| evl1gsummon.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evl1gsummon | ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1gsummon.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1gsummon.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | evl1gsummon.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | |
| 5 | evl1gsummon.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | evl1gsummon.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | crngring 20171 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | 3 | ply1lmod 22183 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑊 ∈ LMod) |
| 12 | evl1gsummon.a | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) | |
| 13 | 12 | r19.21bi 3225 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ 𝐾) |
| 14 | 3 | ply1sca 22184 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
| 15 | 6, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
| 16 | 15 | fveq2d 6835 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑊))) |
| 17 | 2, 16 | eqtrid 2780 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐾 = (Base‘(Scalar‘𝑊))) |
| 19 | 13, 18 | eleqtrd 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
| 20 | evl1gsummon.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 21 | 20, 5 | mgpbas 20071 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
| 22 | evl1gsummon.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 23 | 3 | ply1ring 22179 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 24 | 8, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 25 | 20 | ringmgp 20165 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐺 ∈ Mnd) |
| 28 | evl1gsummon.n | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) | |
| 29 | 28 | r19.21bi 3225 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑁 ∈ ℕ0) |
| 30 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 31 | evl1gsummon.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
| 32 | 31, 3, 5 | vr1cl 22149 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| 33 | 30, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑋 ∈ 𝐵) |
| 34 | 21, 22, 27, 29, 33 | mulgnn0cld 19016 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
| 35 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 36 | evl1gsummon.t1 | . . . . 5 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 37 | eqid 2733 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 38 | 5, 35, 36, 37 | lmodvscl 20820 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ 𝐵) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
| 39 | 11, 19, 34, 38 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
| 40 | evl1gsummon.m | . . 3 ⊢ (𝜑 → 𝑀 ⊆ ℕ0) | |
| 41 | evl1gsummon.f | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 42 | evl1gsummon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 43 | 1, 2, 3, 4, 5, 6, 39, 40, 41, 42 | evl1gsumaddval 22294 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)))) |
| 44 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
| 45 | 42 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 ∈ 𝐾) |
| 46 | evl1gsummon.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
| 47 | evl1gsummon.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
| 48 | evl1gsummon.t2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 49 | 1, 3, 20, 31, 2, 22, 44, 29, 36, 13, 45, 46, 47, 48 | evl1scvarpwval 22299 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
| 50 | 49 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)) = (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶)))) |
| 51 | 50 | oveq2d 7371 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶))) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| 52 | 43, 51 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 ℕ0cn0 12392 Basecbs 17127 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 Σg cgsu 17351 ↑s cpws 17357 Mndcmnd 18650 .gcmg 18988 mulGrpcmgp 20066 Ringcrg 20159 CRingccrg 20160 LModclmod 20802 var1cv1 22107 Poly1cpl1 22108 eval1ce1 22249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22020 df-evl 22021 df-psr1 22111 df-vr1 22112 df-ply1 22113 df-evl1 22251 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |