| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version | ||
| Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1gsummon.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1gsummon.k | ⊢ 𝐾 = (Base‘𝑅) |
| evl1gsummon.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1gsummon.b | ⊢ 𝐵 = (Base‘𝑊) |
| evl1gsummon.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1gsummon.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
| evl1gsummon.e | ⊢ 𝐸 = (.g‘𝐻) |
| evl1gsummon.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1gsummon.p | ⊢ ↑ = (.g‘𝐺) |
| evl1gsummon.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
| evl1gsummon.t2 | ⊢ · = (.r‘𝑅) |
| evl1gsummon.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1gsummon.a | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) |
| evl1gsummon.m | ⊢ (𝜑 → 𝑀 ⊆ ℕ0) |
| evl1gsummon.f | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| evl1gsummon.n | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) |
| evl1gsummon.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evl1gsummon | ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1gsummon.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1gsummon.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | evl1gsummon.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | |
| 5 | evl1gsummon.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | evl1gsummon.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | crngring 20154 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | 3 | ply1lmod 22136 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑊 ∈ LMod) |
| 12 | evl1gsummon.a | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) | |
| 13 | 12 | r19.21bi 3229 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ 𝐾) |
| 14 | 3 | ply1sca 22137 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
| 15 | 6, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
| 16 | 15 | fveq2d 6862 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑊))) |
| 17 | 2, 16 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐾 = (Base‘(Scalar‘𝑊))) |
| 19 | 13, 18 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
| 20 | evl1gsummon.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 21 | 20, 5 | mgpbas 20054 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
| 22 | evl1gsummon.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 23 | 3 | ply1ring 22132 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 24 | 8, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 25 | 20 | ringmgp 20148 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐺 ∈ Mnd) |
| 28 | evl1gsummon.n | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) | |
| 29 | 28 | r19.21bi 3229 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑁 ∈ ℕ0) |
| 30 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 31 | evl1gsummon.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
| 32 | 31, 3, 5 | vr1cl 22102 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| 33 | 30, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑋 ∈ 𝐵) |
| 34 | 21, 22, 27, 29, 33 | mulgnn0cld 19027 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
| 35 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 36 | evl1gsummon.t1 | . . . . 5 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 37 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 38 | 5, 35, 36, 37 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ 𝐵) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
| 39 | 11, 19, 34, 38 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
| 40 | evl1gsummon.m | . . 3 ⊢ (𝜑 → 𝑀 ⊆ ℕ0) | |
| 41 | evl1gsummon.f | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 42 | evl1gsummon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 43 | 1, 2, 3, 4, 5, 6, 39, 40, 41, 42 | evl1gsumaddval 22246 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)))) |
| 44 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
| 45 | 42 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 ∈ 𝐾) |
| 46 | evl1gsummon.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
| 47 | evl1gsummon.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
| 48 | evl1gsummon.t2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 49 | 1, 3, 20, 31, 2, 22, 44, 29, 36, 13, 45, 46, 47, 48 | evl1scvarpwval 22251 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
| 50 | 49 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)) = (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶)))) |
| 51 | 50 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶))) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| 52 | 43, 51 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℕ0cn0 12442 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 Σg cgsu 17403 ↑s cpws 17409 Mndcmnd 18661 .gcmg 18999 mulGrpcmgp 20049 Ringcrg 20142 CRingccrg 20143 LModclmod 20766 var1cv1 22060 Poly1cpl1 22061 eval1ce1 22201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-evl1 22203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |