Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version |
Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsummon.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsummon.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsummon.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsummon.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsummon.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1gsummon.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
evl1gsummon.e | ⊢ 𝐸 = (.g‘𝐻) |
evl1gsummon.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1gsummon.p | ⊢ ↑ = (.g‘𝐺) |
evl1gsummon.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1gsummon.t2 | ⊢ · = (.r‘𝑅) |
evl1gsummon.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsummon.a | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) |
evl1gsummon.m | ⊢ (𝜑 → 𝑀 ⊆ ℕ0) |
evl1gsummon.f | ⊢ (𝜑 → 𝑀 ∈ Fin) |
evl1gsummon.n | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) |
evl1gsummon.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evl1gsummon | ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsummon.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsummon.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | evl1gsummon.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | |
5 | evl1gsummon.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
6 | evl1gsummon.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | crngring 19795 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | 3 | ply1lmod 21423 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑊 ∈ LMod) |
12 | evl1gsummon.a | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) | |
13 | 12 | r19.21bi 3134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ 𝐾) |
14 | 3 | ply1sca 21424 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
15 | 6, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
16 | 15 | fveq2d 6778 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑊))) |
17 | 2, 16 | eqtrid 2790 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐾 = (Base‘(Scalar‘𝑊))) |
19 | 13, 18 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
20 | 3 | ply1ring 21419 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
21 | 8, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
22 | evl1gsummon.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
23 | 22 | ringmgp 19789 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
24 | 21, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
25 | 24 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐺 ∈ Mnd) |
26 | evl1gsummon.n | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) | |
27 | 26 | r19.21bi 3134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑁 ∈ ℕ0) |
28 | 8 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
29 | evl1gsummon.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
30 | 29, 3, 5 | vr1cl 21388 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
31 | 28, 30 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑋 ∈ 𝐵) |
32 | 22, 5 | mgpbas 19726 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) |
33 | evl1gsummon.p | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
34 | 32, 33 | mulgnn0cl 18720 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
35 | 25, 27, 31, 34 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
36 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
37 | evl1gsummon.t1 | . . . . 5 ⊢ × = ( ·𝑠 ‘𝑊) | |
38 | eqid 2738 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
39 | 5, 36, 37, 38 | lmodvscl 20140 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ 𝐵) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
40 | 11, 19, 35, 39 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
41 | evl1gsummon.m | . . 3 ⊢ (𝜑 → 𝑀 ⊆ ℕ0) | |
42 | evl1gsummon.f | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
43 | evl1gsummon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
44 | 1, 2, 3, 4, 5, 6, 40, 41, 42, 43 | evl1gsumaddval 21525 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)))) |
45 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
46 | 43 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 ∈ 𝐾) |
47 | evl1gsummon.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
48 | evl1gsummon.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
49 | evl1gsummon.t2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
50 | 1, 3, 22, 29, 2, 33, 45, 27, 37, 13, 46, 47, 48, 49 | evl1scvarpwval 21530 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
51 | 50 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)) = (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶)))) |
52 | 51 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶))) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
53 | 44, 52 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 Σg cgsu 17151 ↑s cpws 17157 Mndcmnd 18385 .gcmg 18700 mulGrpcmgp 19720 Ringcrg 19783 CRingccrg 19784 LModclmod 20123 var1cv1 21347 Poly1cpl1 21348 eval1ce1 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-evls 21282 df-evl 21283 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-evl1 21482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |