![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version |
Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsummon.q | β’ π = (eval1βπ ) |
evl1gsummon.k | β’ πΎ = (Baseβπ ) |
evl1gsummon.w | β’ π = (Poly1βπ ) |
evl1gsummon.b | β’ π΅ = (Baseβπ) |
evl1gsummon.x | β’ π = (var1βπ ) |
evl1gsummon.h | β’ π» = (mulGrpβπ ) |
evl1gsummon.e | β’ πΈ = (.gβπ») |
evl1gsummon.g | β’ πΊ = (mulGrpβπ) |
evl1gsummon.p | β’ β = (.gβπΊ) |
evl1gsummon.t1 | β’ Γ = ( Β·π βπ) |
evl1gsummon.t2 | β’ Β· = (.rβπ ) |
evl1gsummon.r | β’ (π β π β CRing) |
evl1gsummon.a | β’ (π β βπ₯ β π π΄ β πΎ) |
evl1gsummon.m | β’ (π β π β β0) |
evl1gsummon.f | β’ (π β π β Fin) |
evl1gsummon.n | β’ (π β βπ₯ β π π β β0) |
evl1gsummon.c | β’ (π β πΆ β πΎ) |
Ref | Expression |
---|---|
evl1gsummon | β’ (π β ((πβ(π Ξ£g (π₯ β π β¦ (π΄ Γ (π β π)))))βπΆ) = (π Ξ£g (π₯ β π β¦ (π΄ Β· (ππΈπΆ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsummon.q | . . 3 β’ π = (eval1βπ ) | |
2 | evl1gsummon.k | . . 3 β’ πΎ = (Baseβπ ) | |
3 | evl1gsummon.w | . . 3 β’ π = (Poly1βπ ) | |
4 | eqid 2732 | . . 3 β’ (π βs πΎ) = (π βs πΎ) | |
5 | evl1gsummon.b | . . 3 β’ π΅ = (Baseβπ) | |
6 | evl1gsummon.r | . . 3 β’ (π β π β CRing) | |
7 | crngring 20061 | . . . . . . 7 β’ (π β CRing β π β Ring) | |
8 | 6, 7 | syl 17 | . . . . . 6 β’ (π β π β Ring) |
9 | 3 | ply1lmod 21765 | . . . . . 6 β’ (π β Ring β π β LMod) |
10 | 8, 9 | syl 17 | . . . . 5 β’ (π β π β LMod) |
11 | 10 | adantr 481 | . . . 4 β’ ((π β§ π₯ β π) β π β LMod) |
12 | evl1gsummon.a | . . . . . 6 β’ (π β βπ₯ β π π΄ β πΎ) | |
13 | 12 | r19.21bi 3248 | . . . . 5 β’ ((π β§ π₯ β π) β π΄ β πΎ) |
14 | 3 | ply1sca 21766 | . . . . . . . . 9 β’ (π β CRing β π = (Scalarβπ)) |
15 | 6, 14 | syl 17 | . . . . . . . 8 β’ (π β π = (Scalarβπ)) |
16 | 15 | fveq2d 6892 | . . . . . . 7 β’ (π β (Baseβπ ) = (Baseβ(Scalarβπ))) |
17 | 2, 16 | eqtrid 2784 | . . . . . 6 β’ (π β πΎ = (Baseβ(Scalarβπ))) |
18 | 17 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β π) β πΎ = (Baseβ(Scalarβπ))) |
19 | 13, 18 | eleqtrd 2835 | . . . 4 β’ ((π β§ π₯ β π) β π΄ β (Baseβ(Scalarβπ))) |
20 | evl1gsummon.g | . . . . . 6 β’ πΊ = (mulGrpβπ) | |
21 | 20, 5 | mgpbas 19987 | . . . . 5 β’ π΅ = (BaseβπΊ) |
22 | evl1gsummon.p | . . . . 5 β’ β = (.gβπΊ) | |
23 | 3 | ply1ring 21761 | . . . . . . . 8 β’ (π β Ring β π β Ring) |
24 | 8, 23 | syl 17 | . . . . . . 7 β’ (π β π β Ring) |
25 | 20 | ringmgp 20055 | . . . . . . 7 β’ (π β Ring β πΊ β Mnd) |
26 | 24, 25 | syl 17 | . . . . . 6 β’ (π β πΊ β Mnd) |
27 | 26 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β π) β πΊ β Mnd) |
28 | evl1gsummon.n | . . . . . 6 β’ (π β βπ₯ β π π β β0) | |
29 | 28 | r19.21bi 3248 | . . . . 5 β’ ((π β§ π₯ β π) β π β β0) |
30 | 8 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β π) β π β Ring) |
31 | evl1gsummon.x | . . . . . . 7 β’ π = (var1βπ ) | |
32 | 31, 3, 5 | vr1cl 21732 | . . . . . 6 β’ (π β Ring β π β π΅) |
33 | 30, 32 | syl 17 | . . . . 5 β’ ((π β§ π₯ β π) β π β π΅) |
34 | 21, 22, 27, 29, 33 | mulgnn0cld 18969 | . . . 4 β’ ((π β§ π₯ β π) β (π β π) β π΅) |
35 | eqid 2732 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
36 | evl1gsummon.t1 | . . . . 5 β’ Γ = ( Β·π βπ) | |
37 | eqid 2732 | . . . . 5 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
38 | 5, 35, 36, 37 | lmodvscl 20481 | . . . 4 β’ ((π β LMod β§ π΄ β (Baseβ(Scalarβπ)) β§ (π β π) β π΅) β (π΄ Γ (π β π)) β π΅) |
39 | 11, 19, 34, 38 | syl3anc 1371 | . . 3 β’ ((π β§ π₯ β π) β (π΄ Γ (π β π)) β π΅) |
40 | evl1gsummon.m | . . 3 β’ (π β π β β0) | |
41 | evl1gsummon.f | . . 3 β’ (π β π β Fin) | |
42 | evl1gsummon.c | . . 3 β’ (π β πΆ β πΎ) | |
43 | 1, 2, 3, 4, 5, 6, 39, 40, 41, 42 | evl1gsumaddval 21869 | . 2 β’ (π β ((πβ(π Ξ£g (π₯ β π β¦ (π΄ Γ (π β π)))))βπΆ) = (π Ξ£g (π₯ β π β¦ ((πβ(π΄ Γ (π β π)))βπΆ)))) |
44 | 6 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β π) β π β CRing) |
45 | 42 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β π) β πΆ β πΎ) |
46 | evl1gsummon.h | . . . . 5 β’ π» = (mulGrpβπ ) | |
47 | evl1gsummon.e | . . . . 5 β’ πΈ = (.gβπ») | |
48 | evl1gsummon.t2 | . . . . 5 β’ Β· = (.rβπ ) | |
49 | 1, 3, 20, 31, 2, 22, 44, 29, 36, 13, 45, 46, 47, 48 | evl1scvarpwval 21874 | . . . 4 β’ ((π β§ π₯ β π) β ((πβ(π΄ Γ (π β π)))βπΆ) = (π΄ Β· (ππΈπΆ))) |
50 | 49 | mpteq2dva 5247 | . . 3 β’ (π β (π₯ β π β¦ ((πβ(π΄ Γ (π β π)))βπΆ)) = (π₯ β π β¦ (π΄ Β· (ππΈπΆ)))) |
51 | 50 | oveq2d 7421 | . 2 β’ (π β (π Ξ£g (π₯ β π β¦ ((πβ(π΄ Γ (π β π)))βπΆ))) = (π Ξ£g (π₯ β π β¦ (π΄ Β· (ππΈπΆ))))) |
52 | 43, 51 | eqtrd 2772 | 1 β’ (π β ((πβ(π Ξ£g (π₯ β π β¦ (π΄ Γ (π β π)))))βπΆ) = (π Ξ£g (π₯ β π β¦ (π΄ Β· (ππΈπΆ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3947 β¦ cmpt 5230 βcfv 6540 (class class class)co 7405 Fincfn 8935 β0cn0 12468 Basecbs 17140 .rcmulr 17194 Scalarcsca 17196 Β·π cvsca 17197 Ξ£g cgsu 17382 βs cpws 17388 Mndcmnd 18621 .gcmg 18944 mulGrpcmgp 19981 Ringcrg 20049 CRingccrg 20050 LModclmod 20463 var1cv1 21691 Poly1cpl1 21692 eval1ce1 21824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-srg 20003 df-ring 20051 df-cring 20052 df-rnghom 20243 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-assa 21399 df-asp 21400 df-ascl 21401 df-psr 21453 df-mvr 21454 df-mpl 21455 df-opsr 21457 df-evls 21626 df-evl 21627 df-psr1 21695 df-vr1 21696 df-ply1 21697 df-evl1 21826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |