![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1gsummon | Structured version Visualization version GIF version |
Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsummon.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsummon.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsummon.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsummon.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsummon.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1gsummon.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
evl1gsummon.e | ⊢ 𝐸 = (.g‘𝐻) |
evl1gsummon.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1gsummon.p | ⊢ ↑ = (.g‘𝐺) |
evl1gsummon.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1gsummon.t2 | ⊢ · = (.r‘𝑅) |
evl1gsummon.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsummon.a | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) |
evl1gsummon.m | ⊢ (𝜑 → 𝑀 ⊆ ℕ0) |
evl1gsummon.f | ⊢ (𝜑 → 𝑀 ∈ Fin) |
evl1gsummon.n | ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) |
evl1gsummon.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evl1gsummon | ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsummon.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsummon.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | evl1gsummon.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
4 | eqid 2740 | . . 3 ⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | |
5 | evl1gsummon.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
6 | evl1gsummon.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | crngring 20272 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | 3 | ply1lmod 22274 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ LMod) |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑊 ∈ LMod) |
12 | evl1gsummon.a | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) | |
13 | 12 | r19.21bi 3257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ 𝐾) |
14 | 3 | ply1sca 22275 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑊)) |
15 | 6, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
16 | 15 | fveq2d 6924 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑊))) |
17 | 2, 16 | eqtrid 2792 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐾 = (Base‘(Scalar‘𝑊))) |
19 | 13, 18 | eleqtrd 2846 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
20 | evl1gsummon.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝑊) | |
21 | 20, 5 | mgpbas 20167 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
22 | evl1gsummon.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
23 | 3 | ply1ring 22270 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
24 | 8, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
25 | 20 | ringmgp 20266 | . . . . . . 7 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐺 ∈ Mnd) |
28 | evl1gsummon.n | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) | |
29 | 28 | r19.21bi 3257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑁 ∈ ℕ0) |
30 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
31 | evl1gsummon.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
32 | 31, 3, 5 | vr1cl 22240 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
33 | 30, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑋 ∈ 𝐵) |
34 | 21, 22, 27, 29, 33 | mulgnn0cld 19135 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝑁 ↑ 𝑋) ∈ 𝐵) |
35 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
36 | evl1gsummon.t1 | . . . . 5 ⊢ × = ( ·𝑠 ‘𝑊) | |
37 | eqid 2740 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
38 | 5, 35, 36, 37 | lmodvscl 20898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑁 ↑ 𝑋) ∈ 𝐵) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
39 | 11, 19, 34, 38 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → (𝐴 × (𝑁 ↑ 𝑋)) ∈ 𝐵) |
40 | evl1gsummon.m | . . 3 ⊢ (𝜑 → 𝑀 ⊆ ℕ0) | |
41 | evl1gsummon.f | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
42 | evl1gsummon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
43 | 1, 2, 3, 4, 5, 6, 39, 40, 41, 42 | evl1gsumaddval 22384 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)))) |
44 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
45 | 42 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → 𝐶 ∈ 𝐾) |
46 | evl1gsummon.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
47 | evl1gsummon.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
48 | evl1gsummon.t2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
49 | 1, 3, 20, 31, 2, 22, 44, 29, 36, 13, 45, 46, 47, 48 | evl1scvarpwval 22389 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
50 | 49 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶)) = (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶)))) |
51 | 50 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑥 ∈ 𝑀 ↦ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶))) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
52 | 43, 51 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 Σg cgsu 17500 ↑s cpws 17506 Mndcmnd 18772 .gcmg 19107 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 LModclmod 20880 var1cv1 22198 Poly1cpl1 22199 eval1ce1 22339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-evl 22122 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-evl1 22341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |